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ABSTRACT 
 
 
 

Conventional pitot-static airspeed measurement systems do not yield accurate 

measurements when aircraft speed is below 40 knots. Recent studies have demonstrated 

that neural network approaches for predicting airspeed are quite promising. In this thesis, 

a back-propagation neural network is used to predict the airspeed of UH-60A and OH-6A 

helicopters in the low speed environment. The input data to the neural networks were 

obtained using the FLIGHTLAB flight simulator. The results obtained by flight 

simulation were validated by comparison to results of a previous study of the UH-60A 

helicopter based on actual flight data. The results of the work performed for this thesis 

show that at sea level the UH-60A low airspeed can be predicted with an accuracy of 

± 0.71 knots and ± 0.88 knots for out of ground effect and in ground effect conditions 

respectively.  OH-6A analyses were performed at two pressure altitudes. At sea level the 

OH-6A airspeed can be predicted with an accuracy ± 0.75 knots when the aircraft is out 

of ground effect and ± 0.88 knots when the helicopter is in ground effect. At a pressure 

altitude of 6000 feet OH-6A airspeed can be predicted with an accuracy of ± 0.64 knots 

for both flight conditions. 
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I. INTRODUCTION 

Since the 1970s there has been a significant concern to increase the accuracy of 

airspeed measurement systems because current measurement systems are ineffective at 

low airspeeds. The focus of this thesis is to develop a neural network (NN) model to 

estimate helicopter airspeed in the low speed environment using the NeuralWorks 

Professional Plus/II software. A flight simulator provides the required data that is used as 

inputs to the neural network model. 

The thesis is organized into five chapters. Chapter I is the introduction chapter, 

which presents research results currently available in the area of neural network and 

aircraft speed measurement systems. Chapter II introduces the main concepts behind NN 

implementations and the basic structure of the Back-Propagation Neural Network 

(BPNN). Chapter III describes a specific implementation using the NeuralWare 

Professional Plus/II software and presents the FLIGHTLAB simulation tool. The 

simulations performed as part of this thesis are discussed in Chapter IV. Finally, Chapter 

V summarizes results obtained and discusses avenues for further research. 

 

A. BACKGROUND 

Since 1995, the Naval Postgraduate School (NPS) has conducted several research 

projects using OH-6A “Cayuse” helicopters after receiving two such helicopters from the 

Massachusetts Army National Guard. One of these projects involves the development of 

a Vortex-Ring State Warning System (VRSWS). The vortex-ring state is a condition of 

powered flight where the helicopter settles into its own downwash. The helicopter will 

increase its rate of descent very rapidly as the lift is lost when entering the vortex-ring 

state, and any further application of collective, a flight control mechanism for helicopters, 

tend to reduce rotor efficiency. In this state the rotor experiences a very high vibration 

level and loss of control. The consequences of the vortex-ring state when the helicopter is 

close to the ground might be extremely dangerous because loss of control at low altitudes 

often results in aircraft crash. Development of VRSWS requires better airspeed 

measuring systems than these currently available with most avionics systems.  
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Last year, NPS signed a Cooperative Research and Development Agreement 

(CREDA) with Advance Rotorcraft Technology, Inc. (ART) to reciprocally develop 

advancements in rotorcraft technology. Based on this agreement, NPS provided ART 

with equipment for a flight simulator, including the sticks and grips, seats and avionics 

suite of an OH-6A for integration into the control loader platform. ART provided their 

helicopter modeling suite with advanced visual rendering equipment to produce a fully 

functional stationary open platform flight simulator.  In return for this equipment, ART 

provided the flight modeling software to NPS to develop rotorcraft models for future use 

which includes the OH-6A and V-22 “Osprey” models. NPS was able to obtain flight 

parameters such as rotor RPM, engine torque, roll rate, etc., using simulation techniques 

through its cooperation with ART. LT Gregory Ouellette is currently conducting research 

about FLIGHTLAB, a flight simulation tool provided by ART. The required flight 

parameters for the NN model of this thesis were provided by LT. Ouellette, USN 

[Ref.19]. 

 

B. TECHNOLOGICAL PROBLEM 

The aerodynamic velocity in the plane of a helicopter’s rotor disc significantly 

affects the control characteristics of that helicopter. The pilot easily feels this effect 

during flight and especially in hover, low speed and transition conditions. Small changes 

in these flight regimes are rapidly followed by substantial changes in control sensitivities 

and trim positions. Therefore, the pilot’s job is very difficult when performing tasks 

during these specified conditions, and it is possible for these conditions to occur in any 

flight mission. Pilots are capable of successfully handling the control helicopter with 

training but in IFR flight, where ground references are no longer accessible, the pilot’s 

job becomes increasingly more difficult. The need to extend military operations during 

poor weather and at night has been inevitable for military effectiveness throughout 

history. Therefore, many military missions have been performed during poor visibility 

and in a low speed environment. However, operations under these conditions endanger 

flight safety. The roles of search and rescue, submarine detection, mine countermeasures, 

front line supply, air-to-ground attack, and reconnaissance all demand a low speed, poor 

weather, day or night capability. Thus, several technological improvements have been 



3 

made to aircraft to conduct missions without endangering the lives of the aircrew. Today, 

military helicopters perform a wide variety of tasks in conditions ranging from hot and 

dry to cold and wet, windy and low visibility weather. Accurate low speed velocity 

sensing devices are essential because aircraft velocity and position information are what 

pilots need to perform the aforementioned tasks. 

Conventional methods to measure airspeed for aircrafts have been used for over 

60 years. Pitot-static systems are still commonly used since they offer simple, low cost 

and reliable enough solutions to measure airspeed. In this system, airspeed is derived by 

measuring the difference between the total pressure occurring at the forward facing pitot-

probe and the static pressure measured at a static vent [Ref. 12]. Since helicopters fly at 

relatively lower speeds than aircrafts, and the cruise speed of a helicopter is less than 0.3 

Mach, helicopters are used to fly in incompressible subsonic flow conditions where 

Bernoulli principles pertain. In such flow regimes, airspeed is obtained simply by taking 

the square root of this pressure difference and multiplying the scale factor.   

The flight of a helicopter occurs in the two distinct regimes of hover/low speed 

flight up to 45 knots, including vertical maneuvering, and mid/high speed flight up to Vne 

–never exceed velocity- where Vne is the maximum airspeed permitted under any 

circumstances [Ref. 17]. It is defined as a function of altitude, temperature and gross 

weight. For example, using flight manual of UH-60A, Vne is found to be 186 knots at -20o 

C, 4000 feet and when the gross weight of helicopter is18000 lb. The low speed regime is 

very much unique to the helicopter as an operationally useful regime. No other flight 

vehicles are as flexible and efficient at maneuvering slowly close to the ground and at 

avoiding obstacles. Therefore, the low speed regime is a significant portion of helicopter 

flight time. In fact, the maneuvers done in this regime make the helicopter invaluable. 

Although low speed is very critical for helicopters during take-off, landing or hovering, 

measuring airspeed and wind direction is generally lacking in this regime [Ref. 3]. 

During low speed flight, the current airspeed measurements systems are inaccurate due to 

the rotor downwash and limitations of the pitot-static system. The conventional pitot-

static sensor is ineffective at airspeeds below 40 knots and does not function at all during 

rearward flight [Ref. 8]. John Carter explains in Ref. 12 why it does not function 

properly.  
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The pressure difference in pitot-static system becomes very small at low 
airspeeds. This creates a practical difficulty in that presently available 
pressure measuring techniques which are suitable for aircraft application 
are poor at measuring pressure differentials of less than 1/1200 
atmospheres which corresponds to an airspeed of 20 knots. 

Moreover, rotor downwash inevitably enters the pitot probe, which causes a fast 

error or enters the static port resulting in a slow error. Flow patterns developing around 

the aircraft during sideward and rearward flight may bring erroneous airspeed indications 

[Ref. 13]. 

In low speed flight, required engine power increases due to the difficulty of 

maneuvers. Due to these high engine and tail rotor anti-torque requirements, extra 

attention must be paid to directional control margins. Moreover, vibrator loads can occur 

in some maneuvers, which can result in fatigue damage accumulation in flight critical 

components [Ref. 4]. The pilot is often required to fly this type of maneuver, and ground 

references, if available, are mostly used instead of instruments. However, in a combat 

environment, ground references might not be available which increases the need for 

accurate measurement systems. 

Many developments have been completed since the 1950’s to increase the 

accuracy of measurement systems. One study suggested moving the probes above the 

rotor hub in order to protect the pitot system from the down-wash effect. Another study 

suggested using a swivel device mounted above the rotor hub that can measure true 

airspeed magnitude and direction [Ref. 3]. In this design, two venturi tubes were mounted 

on opposite ends of a rotating arm to provide a differential measurement between the two 

sensors. These sensors were used to calculate airspeed and wind direction [Ref. 4]. 

However, such a system requires a slip ring assembly or a similar means of transferring 

the data from the rotating system to the body of the helicopter. One other approach is 

based on the study of wake under the rotor and using a sensor mounted under the rotor to 

determine the airspeed of the helicopter. In this approach, a 3600 rotating pitot-static 

probe was used to measure the true airspeed and wind direction [Ref. 4]. 

In the late 1970s and early 1980s, Faulkner and Buchner proposed a study based 

on the idea that the measurement of the control position can be used to estimate airspeed 
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when airspeed substantially affects the control trim position. These researches built a 

model using simplified thrust and flapping equations to obtain longitudinal and lateral 

velocity components. However, their analysis requires knowledge of the main rotor flap 

angle, which is difficult to measure [Ref. 8]. 

Although some progress has been made because of these studies, none of them 

have received worldwide acceptance due to system complexity, reliability, and economic 

and aerodynamic issues. 

McCool and Haas describe some other efforts to determine the airspeed 

analytically [Ref. 3]. One of these efforts is a neural network-based approach, which is 

the core of this thesis. In that study, first the flight parameters, such as rotor RPM, cyclic 

position, etc. were obtained during test flights of HH-60J helicopter and CH-46E 

helicopter and then these parameters were used as inputs into a NN model to predict 

airspeed and wind direction. By using fuselage parameters, the problem of transmitting a 

signal from the rotating system to the fuselage is eliminated [Ref. 3]. The results obtained 

from this study proved that NN could be used to predict airspeed with reasonable 

accuracy. 

 A NN implementation is chosen for several reasons. First, it is easy to use. Input 

parameters can be chosen as quantities, which are commonly measured on a flight data 

recorder. Second, the combined influence of inputs can be investigated by using multiple 

hidden layers. Third, a more flexible and empirical estimation can be obtained, as new 

data becomes available to retrain the network [Ref. 16]. Based on the aforementioned 

benefits, McCool and Haas showed that the neural network approach provides a 

mechanically simple and inexpensive alternative to current low airspeed measurement 

technology [Ref.3]. 

The primary objective of this thesis is to determine the airspeed of an OH-6A 

helicopter using an NN implementation with the input data provided from the helicopter 

simulator model FLIGHTLAB. Our intention is to increase the accuracy of the 

measurement systems in a cost-effective way by using the NN and a simulator model. 

Since simulator data is used as inputs to the system, first UH-60A data were obtained 

from the simulator and used as inputs to the NN. HH-60J and UH-60A helicopters are 
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very similar and they are both variant of Skorsky basic Hawk series helicopters. 

Therefore a comparison of HH-60J helicopter and UH-60A helicopter results would 

provide the verification of using simulator data for the NN model. Once the model is 

validated for the UH-60A helicopter, the next step is to predict the speed of the OH-6A 

helicopter using the same approach.  
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II. NEURAL NETWORKS  

A.  INTRODUCTION TO NEURAL NETWORKS 
The human brain is the world’s most complex computing device. Thus, the 

brain’s powerful thinking, remembering, learning and problem solving capabilities have 

been studied and modeled for digital computing. The brain is so complex that scientists 

have only just begun to understand how it works. Although little is known about the brain 

and the neural system, modeling the functionality of the brain in a very fundamental 

manner leads to the creation of neural networks. 

The neuron is the fundamental cellular unit of the nervous system and, in 

particular, the brain [Ref. 6]. The neuron functions like a microprocessing unit, which 

receives and combines signals from many other neurons. The brain consists of 1011 

number of neurons. They are connected to each other by approximately 104 connections 

per element or 60 trillion connections total [Ref. 1]. The input path of a cell body is 

called “dendrites”. The output path is called “axon”. The axon of a neuron splits up and 

connects to the dendrites of other neurons through a connection called a “synapse”. The 

cell body, which is also called “soma”, sums incoming signals when sufficient inputs are 

received. It is generally thought that all functions are stored in the neurons and in the 

connections between them. Learning occurs when new connections are established or 

existing connections are modified. The structure of a neuron is depicted in Figure 1 [Ref. 

10]. 

In an artificial neural network (NN), the same principles are used to simulate and 

capture some of the power of the brain and the neural system. In a NN, the unit 

corresponding to a neuron is called the “processing element (PE)”. A PE has many input 

paths and combines the values of these input paths. The combined input is then modified 

by a transfer function. 
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Figure 1.   Structure of a Neuron [From Ref. 10]. 

 

 The transfer function is also referred to as an “activation function”. This transfer 

function can be either a threshold function or a continuous function of the combined input 

[Ref. 6]. When the transfer function is a threshold function, as when the combined 

activity level of PE reaches a certain level, the information passes or otherwise is filtered. 

The output path of the transfer function is passed directly to the output path of PE. The 

PE output is connected to the other PE input paths through connection weights, as in a 

neural system. 

The NN is trained to perform a particular function by adjusting the values of 

strength of connections (weights) between elements. The procedure to modify weights 

and biases of a network is called a learning rule, where the bias corresponds to a weight 

with a constant input. Note that, biases are sometimes added to add more flexibility to the 

network configuration. There are two types of learning: 

1) Supervised Learning, where sets of inputs and desired outputs (target values) 

are presented to the network, and the NN configures itself to achieve desired input/output 

mapping; 2) Unsupervised Learning, where only inputs are shown to the network and NN 

organizes itself internally so that each PE responds strongly to different sets of inputs 

In this thesis, only supervised learning schemes are considered. In that type of 

learning, a NN generates its own rules by learning from shown examples. Learning is 

achieved through a learning rule that makes necessary modifications to weights and 

A Pwts of * 
Tvpio»! Nerv« C«ll 

Dendrites :    Accept inputs 
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Axon :   Turn the processed inputs 
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Synapses :   The electrochemical 
contact between neurons 
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biases in response to network output and target values. Figure 2 shows how such a NN 

system works. 

 

Figure 2.   System Diagram of NN [From Ref.2]. 

 

A NN consists of many PEs grouped together called layers. A layer is defined as a 

group of neurons having connections to the same inputs and sending outputs to the same 

destinations [Ref. 2]. Figure 3 depicts the layer structure of a NN. 

 

Figure 3.    Layer structure of NN [From Ref. 10]. 

A general NN usually consists of an input layer, one or two hidden layers, and 

one output layer. The typical structure of a layer with one neuron is presented in Figure 4.  
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Figure 4.   Structure of a layer [from Ref.2]. 

 

A layer consists of the following elements: 

• An input vector (p), 

• Weights (w) represent connection strength, 

• Summation (∑), 

• Bias vector (b) represents a column vector of bias values for a layer of 
neurons, 

• Transfer function (f), 

• Output vector (a) is the output of the network. 

The architecture of a NN depends on the number of layers the network possesses, 

the number of neurons in each layer, each layer’s transfer function, and how the layers 

are connected to each other. Note that there is no unique architecture for any given 

problem, and the best architecture heavily depends on the data presented to the network, 

the number of neurons for each layer selected by the user, and the selected activation 

function. Most practical NNs have just two or three layers. It is certain that the greater 

number of neurons in the hidden layer, the more powerful the network may potentially 

be. Note that, however, adding more neurons makes the network more complex and 

complexity should be minimized since it increases training time. Furthermore, the NN 

may memorize the training pattern set, but not perform well on data outside of the 

training set when the ratio of neurons to training patterns is too large. This problem is 

referred to as overspecialization or overfitting. 
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B.  NEURAL NETWORKS BACKGROUND 

Although background studies of NN, extend back to the late 19th and early 20th 

centuries, modern NN implementations first appeared in 1943 with the works of Warren 

McCulloch and Walter Pitts. Their researches considered the concept of artificial 

neurons, which have the capability to compute arithmetic or logical functions. McCulloch 

and Pitts published watershed paper entitled “A Logical Calculus of Ideas Imminent in 

Nervous Activity” [Ref. 6]. 

In the late 1950s, Frank Rosenblatt proposed the perceptron network and the 

associated learning rule. In 1957, Rosenblatt published the first major research project in 

neural computing which included the development of the perceptron element. The 

perceptron is a pattern classification system, which could identify both abstract and 

geometric patterns. In addition, the perceptron can make limited generalizations and can 

properly categorize patterns despite noise in the input [Ref. 5]. This study showed the 

first practical application of NN by demonstrating how NNs can perform pattern 

recognition. In 1959, Bernard Widraw and Tedd Hoff proposed the Adaline (Adaptive 

Linear Element), based on simple neuron-like elements and used it to train adaptive linear 

networks. The Adaline and the two-layer Madaline version were used for a variety of 

applications including speech recognition, character recognition, weather prediction, and 

adaptive control. Widraw used the adaptive linear element algorithm to develop adaptive 

filters that eliminate phone line echoes, in the first real life NN application [Ref. 6]. 

In the mid-1960s, Marvin Minsky and Seymour Papert, considered the NN 

potential limitations. They showed that these already known networks could handle 

linearly separable problems only and were usually not appropriate for real life 

applications. As a result, NN research faded for a while.  

In the 1970s, Kohonen, Grossberg and Anderson proposed the Kohonen Network 

and the Self–organizing Network. Kohonen introduced the concept of the competitive 

learning rule in which PEs compete to respond to an input stimulus and the winner adapts 

itself to respond more strongly to that stimulus. This type constitutes an unsupervised 

learning process and the internal organization of the network is governed only by input 

stimuli [Ref. 5]. Grossberg’s contribution was a wealth of research towards the design 
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and construction of neural model as he used neurological data to build neural computing 

models. Anderson developed a linear model, called a linear associator. Which is based on 

models of memory storage, retrieval and recognition. In addition, Anderson improved the 

model by combining it with a nonlinear post-processing algorithm, which is used to clean 

up spurious responses. This model is called Brain-State-in-a –Box [Ref. 5].  

In the 1980’s, NN became popular again with the back-propagation algorithm for 

training multilayer perceptron networks. The concept of back-propagation algorithm was 

presented by several researchers, such as David Parker, Yaun LeCun, David Rumelhart, 

James McClelland, and Geoffrey Hinton. While a perceptron network is only capable of 

solving linear problems, back-propagation network can solve more complex nonlinear 

problems. This significant capability made the back-propagation networks the most 

widely used networks. 

 In 1982, John Hopfield presented a paper describing his neural computing system 

called the “crossbar associative network” or known as the “Hopfield Model”. This model 

represented a neuron operation as a thresholding operation and illustrated memory as 

information stored in the interconnections between neuron units. He also illustrated and 

modeled the brain’s ability to call up responses from many locations in response to a 

stimulus. Thus, this model represents how a NN associates information from many 

storage sites for a given input [Ref. 6]. In the 1980s, the Bi-directional Associative 

Memory (BAM) network, Boltzman Machine, the General Regression NN, and the 

Learning Vector Quantization Network were developed, in addition to the back-

propagation and Hopfield models. 

Although the concept of NN has been around for about 50 to 60 years, most 

applications have appeared in the last fifteen years and the field is still developing very 

rapidly. NNs can be found in many fields ranging from aerospace to medicine, banking 

and robotics. Given the work done and range of applications, NN will most likely be a 

permanent fixture not only as a solution to everyday problems but also as a tool to be 

used in appropriate situations. It is certain that the more the structure of the brain is 

understood, the more advances there will be in NN. 
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C. INTRODUCTION TO THE BACK-PROPAGATION NEURAL 

NETWORK 

Although in 1974 Paul Werbos described a similar algorithm to train multilayer 

network, Back-propagation (BP) was invented independently by David Parker, Yaun 

LeCun, David Rumelhart, Geoffrey Hinton and Ronald William in the mid 1980s.  

Back-propagation is a very popular NN learning algorithm to train multilayer 

networks with differentiable transfer functions to perform function approximation, 

pattern association and classification. The algorithm is named for how it handles errors in 

the network. The derivatives of the network error with respect to the network bias and 

weights are computed starting from the very last layer up to the first layer in order to 

modify the weights and biases of the network. The process starts from the output layer 

and goes back to the first layer and is therefore called the “Back-Propagation Network”.  

Typically, back-propagation network has an input layer, one or two hidden layers 

and one output layer. Although there is no limit on the number of hidden layers, generally 

one or two hidden layered networks are selected due to the complexity of the resulting 

system. An example of a typical network is shown in Figure 5. 

 
Figure 5.   A Typical Back-Propagation Network [From Ref. 2]. 

A BPNN is typically represented with the following notation: R-S1-S2-S3, where 

R is the number of inputs and Si is the number of neurons at layer i. In Figure 5, the input 

vector to the network is shown by Pi. Transfer function is represented by fi and bi 

represents bias. Depending on the selected transfer function, the BPNN can be used to 
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solve linear or nonlinear problems. In order to solve a nonlinear problem, a nonlinear 

transfer function should be selected. 

The first step in BPNN is to transfer the input forward through the network. The 

output of one layer becomes the input to the following layer. Thus, the output of a 

network can be defined as 

)*( )1( MMMMM bawfa += −  ,                                                                       (2.1) 

where M = 1,…….., R  and R is the number of layers in the network. In Figure 5, for the 

first layer, a(M-1) is a(0), which is the input of the network, and a(3) is the output of the last 

layer. 

The second step is to propagate the errors, or in other words, sensitivities 

backward through the network from the last layer all the way to the first layer. The 

BPNN algorithm is a generalization of the LMS algorithm, which uses the mean square 

error as a performance index. As each input is applied to the network, the output, a, is 

compared with the associated target value, t. The algorithm then adjusts the network 

parameters in order to minimize the mean square error [Ref. 1].  

Thus, given the error is defined as:   

[ ]e t a= −  ,                                                                                                          (2.2) 

and the expectation of mean square error is defined as 

( ) ([ ]) [( ) ( )]T Tf x E e e E t a t a= = − − ,                                                                  (2.3) 

the expectation of the squared error at iteration k becomes [Ref. 1] 

( ) [( ( ) ( )) ( ( ) ( ))]Tf x E t k a k t k a k= − − .                                                                (2.4) 

The algorithm adjusts weights and biases as follows [Ref. 1] 

M M
i,j i,j M

i,j

w (k+1) = w (k) -  
w

fα ∂
∂

,                                                                    (2.5) 

M M
i i M

i

(k+1) = b (k) -  fb
b

α ∂
∂

, 



15 

 where α is the learning rate. This shows that the weights at any given iteration are equal 

to the weights at the previous iteration adjusted by some fraction, α, of the sensitivity of 

the error to that weight. In other words, the weights at each iteration are adjusted in a way 

that reduces the error at the previous iteration. 

The selection of α is usually done by trial and error. Too large an α often leads to 

divergence of the learning algorithm while too small an α results in a slow learning 

process [Ref. 9]. 

Note that the above equations include partial derivatives. Since the error is an 

indirect function of the weights in the hidden layer, a chain rule is used to compute these 

partial derivatives. These partial derivatives are called sensitivities and defined as: 

M
i M

i

fs
n
∂

=
∂

   .                                                                                                       (2.6) 

In the above equation si is called the sensitivity of f to changes at layer M in the ith 

element of the net input. 

The next step is to propagate the sensitivities backward 

1
1 1( )

M
M M M T Ms f n w s

−•
− −= ,          for M = R,….,1  .                                  (2.7) 

The final step is to adjust weight and biases with respect to these sensitivities, which 

leads to 

1( 1) ( ) ( )M M M M Tw k w k s aα −+ = − ,                                                                (2.8) 

( 1) ( )M M Mb k b k sα+ = − . 

Although the BP network is a very powerful technique, it usually requires a long 

training time. However, using some tricks and heuristics can often help to obtain an 

efficient BPNN implementation [Ref. 9]. 

In summary, the BPNN is a commonly used technique for solving nonlinear 

estimation problems, provided that a nonlinear transfer function is selected. The BP 

algorithm is based on a LMS algorithm that minimizes the squared error, where the chain 

rule is used to compute the derivatives of the error with respect to weights and biases in 



16 

the hidden layers. The methodology in the BP network is a three-step process. First, the 

input is propagated forward through the network and then the sensitivities are computed. 

Second, starting from the last layer, these sensitivities are propagated backward through 

the network. Finally, weights and biases are updated using these sensitivities. 
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III. DEVELOPMENT OF NEURAL NETWORK MODEL 

A. NEURALWORKS PROFESSIONAL II/PLUS SOFTWARE  

The model built for this analysis is derived from the NeuralWorks simulation 

software program presented by NeuralWare, Inc. NeuralWorks is a user-friendly program 

that makes it possible to not only select network parameters easily and quickly but also to 

present network results effectively. Many NN algorithms such as BPNN, Radial Basis 

Function NN, and LVQ, are included in the software. Once the algorithm type is chosen, 

the next step is to define the network architecture, which includes specifying the number 

of layers and the number of PEs associated with each layer, etc. Several types of learning 

rules and PE transfer functions are embedded in the program. NeuralWorks also allows 

the user to select learning rates and momentum terms. In addition, the extensive and 

powerful instrumentation and diagnostic package allows the user not only to monitor and 

adjust network parameters but also to display weights, errors, classification rates and 

confusion matrices in graphical formats. Moreover, users can display the networks 

through network or Hinton diagrams. These specifications make NeuralWorks 

Professional II/Plus useful in designing, building, training, testing and deploying neural 

networks to solve complex, real-world problems [Ref. 5]. 

The following picture shows a typical window of the Neural Works Professional 

II/Plus software: 

 

Figure 6.   Typical Window of Neural Works Professional II/Plus Software. 
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B. FLIGHTLAB SIMULATOR 

Flight simulation tools have been used extensively not only for training and 

evaluation of aircrew members but also for the design and analysis of aerospace vehicles. 

The need to use flight simulation systems instead of real aerospace vehicles depends on 

the following reasons: 

• The complexity of aircraft systems, 

• High operating costs of aircrafts, 

• The limitations of operating environment of aircrafts, 

• Technological improvements in flight simulators. 

In addition, flight simulators provide safe and effective conditions for training 

purposes as instruction, demonstration and practice of certain maneuvers and procedures 

that cannot be done during real flight conditions may easily be performed in a simulated 

environment. Finally, longer training periods can be tolerated due to the low operating 

cost of simulators. Therefore, modern training procedures benefit from simulation tools 

extensively. 

Simulators also play an important role in engineering processes such as design 

and analysis of aircraft. It is certain that the dynamics of rotary-wing aircraft is much 

more complex than those of fixed-wing aircraft. Consequently, helicopter simulation 

systems require high computational power to include a complex set of computer 

programs, very powerful and expensive computer systems and full motion based 

simulation devices. Recent improvements in computer and simulation technology make 

simulators able to produce data as correct as real helicopters. These improvements make 

it possible to make use of simulators for design, test and analysis purposes. 

FLIGHTLAB is a commercial-off-the-shelf type of software product developed 

by Advanced Rotorcraft Technologies, Inc (ART) for the development and operation of 

flight vehicle dynamics models in simulation applications especially for helicopters. 
FLIGHTLAB is a tool that allows a user to build each section of a model separately and 

then combine the pieces under the same framework similar to building a model by using 

a finite element approach [Ref. 14]. This approach is very useful for engineering studies. 

In order to provide a desktop pilot interface for FLIGHTLAB models, ART has 
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developed PilotStation, a turnkey executive for real time simulation operations that 

couples image generation and pilot control inputs with the FLIGHTLAB flight dynamics 

model to provide a low cost, pilot-in-the-loop simulation. PilotStation can also be used 

with FLIGHTLAB code generated models to provide a low cost, real time simulation 

capability using PCs [Ref. 7]. PilotStation, which can be run on UNIX or LINUX 

operated computers, processes the high fidelity rotorcraft model and generates the cockpit 

gauges and the window displays.     

FLIGHTLAB uses a simulation language called Scope. This language is an 

interpretive language that uses the industry standard MATLAB syntax, coupled with new 

language constructs and a combination of C and Fortran computer languages to make the 

building, testing and solving of nonlinear dynamic rotorcraft simulation models easy 

[Ref. 7].  

Another feature of the FLIGHTLAB Simulation System is Xanalysis.  This tool 

makes it possible to design, test and analyze rotorcraft models by allowing the user to 

modify model parameters and perform a wide range of analyses on design alternatives. A 

set of predefined test scenarios carry specific rotorcraft analyses such as performance, 

stability and control, handling qualities and aerodynamic and structural loads. In addition 

to these features, the simulation can be automatically configured to interact with the test 

vehicle’s configuration and test conditions while using the time history of the test flight’s 

control inputs to implement the simulation [Ref. 7]. These features are the required 

characteristics necessary to implement the model built for this thesis and make use of 

data provided by a simulator instead of a real test flight.  

The following figure depicts the X-Analysis ``Flight Test Utility'' [Ref. 7]: 
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Figure 7.   Xanalysis Window [From Ref. 7]. 

 
C. SELECTING DATA AND BUILDING THE MODEL  

In the early 1990s, Kelly M. McCool and David J. Haas at Naval Surface Warfare 

Center, Bethesda, MD, developed a study of UH-60 helicopter airspeed estimations using 

NN in a low speed environment. McCool and Haas built and implemented a BPNN with 

two hidden layers and 25 processing elements in each layer. The data used as input for 

the NN were obtained from actual test flights performed at the Naval Air Warfare Center, 

Aircraft Division, Patuxent River, MD. [Ref. 4]. Their study was used as a starting point 

for this thesis since similar analysis was performed but with different data sets. They used 

real flight test measurements as a source of data for their model. FLIGHTLAB simulator 

outputs were used for NN input for this thesis. In order to evaluate how well the 

simulator performs and how well the relationship between the simulator parameters and 

low airspeed is developed, the simulator was first run for the UH-60A helicopter to 

compare the results of the present study and the results of the actual test flights. The 

simulation data was analyzed using a similar network architecture and network 

parameters, to make a fair comparison. The goal of this approach is to determine whether 

using a simulator instead of a real test flight is feasible or not. 

The simulator was run for UH-60A helicopter from hover to 50 knots with 5 knots 

intervals at various gross weights ranging from 16000 to 24000 lbs with 1000 lbs 

intervals and at various sideslip angles from 0 to 3600 with 300 intervals to obtain the 

input data for the NN model. However, sideslip angles were varied from 3000 to 600 for 

velocities 35 knots and above because of the limitations of the UH-60A helicopter since 



21 

the helicopter cannot fly rearward or sideward when the speed is above 30 knots. The 

altimeter was set to 85 feet and AGL to obtain the results when the helicopter is out of the 

ground effect and at level flight. In a ground effect, analysis was performed by setting the 

altimeter to 20 feet AGL for the UH-60A helicopter. The wind was assumed to be zero 

for this analysis. Fifteen parameters were chosen as inputs for the neural network model 

based on the variables described above, and are shown in Table 1. 

 
MODEL VARIABLES FOR UH-60A HELICOPTER 

Airspeed 0 - 50 Knots  (5 Knots intervals) 

Gross weight 16000 - 24000 lbs  (1000 lbs intervals)  

Sideslip angle 0- 360 degrees   and 300 - 60 degrees (30 degrees intervals) 

Altimeter (AGL) 20 ft  (for in ground effect), 85 and (for out of ground effect) 

Wind Speed 0 

Pressure Altitude Sea level   

NN MODEL INPUT PARAMETERS 

1. Cyclic position (Lateral) 

2. Cyclic position (Longitudinal) 

3. Collective position 

4. Pedal position 

5. Roll rate 

6. Pitch rate 

7. Yaw rate 

8. Pitch attitude 

9. Roll attitude 

10. Altimeter 

11. Climb rate 

12. Main Rotor Blade RPM 

13. Engine torque 

14. Gross weight 

15. Sideslip angle 
 

Table 1.   Neural Network Input Parameters. 
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These fifteen parameters, which define the condition of the related part of the 

helicopter at certain settings, are the outputs of the FLIGHTLAB simulator. The data was 

split into two sets, one for training the network (training data set) and the other one for 

evaluating the network performance (test data set). The first set used for training includes 

the data related to airspeeds at 0, 10, 20, 30, 40, 50 knots at all gross weights and sideslip 

angles. The second set used for testing was formed with the remaining input data. 

The type of network was selected, after setting up training and test data sets. A 

Back-propagation approach was selected as it was used before with success [Ref. 3]. A 

Radial Basis Function Network (RBFN) was selected as an alternative network because it 

can be used in most applications where back-propagation approaches may be used.  

However the RBFN trains faster and leads to better decision boundaries than a BPNN in 

many classification and decision problems. The learning rule used in RBFN is an 

unsupervised learning rule. The results of these two models are presented in Chapter IV. 

The next step in the BPNN scheme involved the selection of number of layers and 

neurons in each layer. First the model in Reference 3 was used as a starting point, since 

the first goal of this study was to compare the results of the model implemented by real 

flight data and the model by simulator data. Thus, we selected two hidden layers and 25 

neurons in each hidden layer, resulting in a 15-25-25-1 BPNN structure. Several models, 

were also studied; 14-25-25-1, 15-18-25-1, 14-14-14-1, 14-14-12-1, and 14-14-10-1.  

Next, the learning coefficient and momentum term were determined. Learning 

coefficients control the changes in size of weights and biases during learning. Setting an 

appropriate learning rate is significant because a small learning coefficient leads to very 

little learning, which increases the training time. However, a large learning coefficient 

may cause the performance index to diverge, meaning that no learning occurs. Therefore, 

a small learning rate is generally used to avoid divergence. Next, the momentum term is 

selected. The momentum term helps to obtain faster learning when using a low learning 

rate. In this study, the appropriate values for these two terms were determined by trial and 

error. 

Finally, the learning rule and transfer function type were selected. There are 

several learning rules available in NeuralWorks, such as, the Extended Delta-Bar-Delta 
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(Ext. DBD), Normalized Cumulative Delta (NCD), Quickprop, Delta Bar Delta (DBD) 

and Delta Rule (DR). In this study, several types of learning rules were analyzed for the 

UH-60A helicopter and the results are presented in Chapter IV. Based on the results of 

the UH-60A helicopter model, only Ext. DBD and NCD learning rules were used for the 

analysis of the OH-6A helicopter. NCD is a learning rule, which is immune to changes in 

the epoch length, where an epoch is the number of sets of training data presented to the 

network between weight updates. The Ext. DBD rule takes momentum term into 

consideration. The transfer function is used to map the output of a neuron or a layer to its 

actual output [Ref. 2] and may be linear or nonlinear.  The most commonly used transfer 

functions are depicted in Table 2 [Ref. 1].  

 

NAME INPUT/OUTPUT RELATION 

Hard Limit 0 0
1 0

a n
a n

= <
= ≥

 

Linear  a n=  

Log-Sigmoid 1
1 na

e−=
+

 

Hyperbolic Tangent Sigmoid n n

n n

e ea
e e

−

−

−
=

+
 

Competitive 1a =  neuron with max n 

0a =  all other neurons 

 
Table 2.   Commonly Used Transfer Functions. 

 

The sigmoid transfer function is commonly used in BPNN implementations 

because it is differentiable. NeuralWorks provides the hyperbolic tangent and the sine 

function as alternative functions. The hyperbolic tangent function is a bipolar version of 

the sigmoid function. The sigmoid function maps the output between 0 and 1 smoothly 
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whereas the hyperbolic tangent function places it between –1 and 1. In this work, the 

hyperbolic tangent transfer function (Tanh) is used. 

Once the feasibility of this approach had been verified, the same type of 

architectures and NN model parameters, were used for the OH-6A helicopter. These 

parameters were the same as those given in Table 1, except for the engine torque 

parameter. The only difference utilized for the second part of the analysis was the 

altimeter setting. The altimeter was set to 12 feet for in ground effect data and 100 feet 

for out of ground effect data for the OH-6A helicopter. Besides the altimeter setting, 

other parameters, such as gross weight and pressure and altitude, were adjusted for the 

OH-6A helicopter. Gross weight for OH-6A was defined ranging from 1500 lb. to 2500 

lb. with 100 lb. increments. Pressure altitude was set to 90 ft for sea level and 6000 ft for 

high-level altitude. For both pressure altitudes, in ground effect analyses were performed 

at 12 ft, while out of ground effect analyses were performed at 100 ft. 
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IV. ANALYSIS AND RESULTS 

The NN-based approach to determine helicopter low airspeed developed by Haas 

and McCool has proven to be quite promising. In their study, a BPNN configuration with 

the Extended Delta Bar Delta learning rule, 2 hidden layers and 25 PEs per layer was 

selected [Ref. 3]. The data used as input to the NN were obtained from actual test flights 

performed at the Naval Air Warfare Center, Aircraft Division, Patuxent River, MD. 

Based on the model they implemented, and using the methodology described in the 

previous section, in this thesis the NN model was first developed for the UH-60A 

helicopter by using simulator data. The first model architecture developed for this study 

was approximately the same model as that described in Ref. 3, since most of the network 

parameters such as number of layers and number of neurons are determined by trial and 

error. The first network selected was a 14-25-25-1 BPNN with the Ext. DBD learning 

rule, and did not include the sideslip angle parameter as input to the network.  Various 

architectures were subsequently tried with different learning rules. The momentum 

function was varied from 0.2 to 0.6 with the best results obtained at 0.4. Therefore, all 

OH-6A analyses used a momentum function to 0.4. The NN output error airspeed was 

measured in knots at 1 σ and in terms of the root mean square (RMS) error, as reported 

by the NeuralWare software. The number of learning iterations was set to 50000 since the 

network stabilized after approximately 20000 iterations for most of the implementations. 

A helicopter flying close to the ground requires less power than when it is flying 

far from the ground. The proximity of the ground to the rotor disk constrains the rotor 

wake and reduces the induced velocity at the rotor, which causes a reduction in the power 

required for a given thrust. This is called ground effect. A helicopter can hover in ground 

effect at a higher gross weight or altitude than when it is out of ground effect. However, 

in forward flight, the effect of the ground diminishes with the forward speed. Data sets of 

both helicopters were obtained by running the simulator for two flight conditions: in-

ground effect (IGE) and out-of-ground effect (OGE). These data sets are called single 

condition data sets. After training and testing with the single condition data sets 
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separately, the sets were combined for a baseline data set. The networks were retrained 

and tested with the combined data set. 

The OGE single condition data set has a dimension of [1144x14] for the UH-60A. 

The IGE single condition data set has a dimension of [1144x15]. The difference is due to 

the fact that the UH-60A OGE data did not include the sideslip angle. Sideslip angle was 

included for the UH-60A IGE and combined data sets. For the OH-6A helicopter type, 

the sideslip angle was included in all data sets, but the engine torque was not available, so 

all OH-6A single condition data sets have dimensions of [1144x14]. The single condition 

data sets were split into training and testing sets. Each training set is a subset of its single 

condition data set with a dimension of [638x14] or [638x15].  Each testing set is made up 

of the remaining elements of the single condition set and has a dimension of [506x14] or 

[506x15]. Various networks were trained separately using these single condition data 

sets. Later, the single condition data sets were combined forming a baseline data set with 

a dimension of [2288x15] for the UH-60A and [2288x14] for the OH-6A. A baseline 

training set was formed as a subset of the combined set with a dimension of [1276x15 or 

14]. The remaining elements of the baseline set formed the baseline testing set with 

dimensions of [1012x15 or 14]. The networks were retrained using these combined 

training sets. Combined and single condition, OGE and IGE, results were obtained again 

from each network that was trained with these baseline data sets. Finally, NN model 

results were exported to MATLAB to develop the following tables and figures.  

Each figure consists of four windows. The first window shows the relationship 

between gross weight and the predicted speed related to that particular gross weight. The 

second window shows the range of the predicted speed for each actual speed. The third 

and fourth windows display the relationship between predicted speed and the sideslip 

angle. In the third window, the speed range is from 0 knots to 30 knots, whereas in the 

last window, the speed varies from 35 knots to 50 knots. In order to make the figures 

more readable and easier to distinguish the NN predictions from one another, adjacent 

speeds are illustrated with a different marker. NN outputs for 5 knots, 15 knots and 45 

knots are presented with circles while outputs for 15 knots and 35 knots are demonstrated 

with triangles. The structure of the NN, learning rule, helicopter type, RMS error and 

altitude information about that figure is provided in the figure label. 
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Each table corresponds to a different NN type and consists of five columns.  The 

first column presents actual airspeed and target values for the NN model. The second 

column gives the mean value of the NN outputs related to each target speed. The third 

column shows airspeed errors at 1 σ in terms of knots. This error shows the standard 

deviation (SD) around the mean and it is computed by the MATLAB function “std”. The 

next column demonstrates the error percentage at 1 σ relative to the target speed. It is 

computed by the following formula: 

Percent Error = 100*
i

i

V
σ

,                                                                                 (4.1) 

where σi  is the error SD related to that speed and Vi is the actual speed. The last column 

shows the absolute maximum error of the NN predicted speeds. 

Results obtained for analyzed architectures follow in the next section. 

A. ANALYSIS OF THE UH-60A MODEL 

1.  Out of Ground Effect (OGE) Analysis 
This section shows the results of OGE analyses by setting the altimeter of the 

simulator to 85 feet AGL. The network was trained using this single condition data set 

obtained for this altitude. The results of OGE analysis using the combined data set are 

shown in the UH-60A Baseline Analysis section. 

a. 2-Hidden Layer BPNN 
(1) 14-25-25-1 Ext. DBD. Results are shown in Figure 8 and in 

Table 3. The RMS error is 0.0593.  Although the network performance on the training 

data is quite good, the test results are not close enough to the target speeds. Note that, the 

NN produced a maximum speed error of 3.51 and 3.86 knots at 5 knots and 45 knots 

respectively. A 0.7017 knots airspeed error SD was achieved by this setup. The 

percentage of error is worst at 5 knots, where it is 8.5%, while it is about 3 % for other 

speeds.   
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NEURAL NETWORK RESULTS  
Total SD = 0.7017 

 
Actual 
Airspeed (kts) Mean of 

Airspeed (kts) 
Airspeed Error 
at 1 σ   (kts) 

Percent Error 
at 1 σ   

Abs. Maximum 
Error  (kts) 

5 2.3322 0.4249 8.4979% 3.5125 
15 16.1533 0.4601 3.0675% 1.8307 
25 23.8216 0.5045 2.0179% 2.2057 
35 36.2752 1.0928 3.1222% 3.1262 
45 46.2789 1.4228 3.1617% 3.8625 

 
Table 3.   Results for the UH-60A helicopter at 85 ft.; network configuration 14-25-25-1; 

Ext. DBD learning rule. 

 

 

Figure 8.   Results for the UH-60A helicopter at 85 ft.; network configuration 14-25-25-1; 

Ext. DBD learning rule. 

 
(2) 14-25-25-1 NCD. Results for this configuration are shown 

in Table 4 and in Figure 9. The RMS error is 0.0658 with the NCD learning rule. The 

maximum value of the predicted speed error is ± 3.8584 knots. The speed prediction 

accuracy within ± 1 σ is 0.7506 knots. The airspeed error SD at speeds 25, 35 and 45 
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knots is about 1 knot or 3 %. For speeds equal to 5 and 15 knots, the error percentage 

increases to 6 %.  

NEURAL NETWORK RESULTS    
   Total SD = 0.7506 

 
Actual  
Airspeed (kts) Mean of 

Airspeed (kts) 
Airspeed Error 
at 1 σ   (kts) 

Percent Error 
at 1 σ   

Abs. Maximum 
Error  (kts) 

5 2.7932 0.3221 6.4425% 2.7872 
15 17.0481 0.8209 5.4726% 3.0500 
25 23.3043 0.6470 2.5878% 2.5837 
35 36.8160 1.0996 3.1417% 3.8584 
45 46.2666 1.1273 2.5051% 3.0720 

 
Table 4.   Results for the UH-60A helicopter at 85 ft.; network configuration 14-25-25-1; 

NCD learning rule. 

 

 

Figure 9.   Results for the UH-60A helicopter at 85 ft.; network configuration 14-25-25-1; 

NCD learning rule. 

 



30 

(3) 14-25-25-1 DBD.  Figure 5 and Table 10 summarize the 

findings for this configuration. Results show the RMS error for this learning rule is 

0.0721. This model predicts the speed very accurately when the actual speed is 45 knots 

with a mean value of 45.19 knots, corresponding to a speed error prediction rate of 

1.42%. However, when the speed is 15 knots and 35 knots the maximum error in the 

prediction increases significantly to 4.9681 knots, while the error SD goes up to 1.1142 

knots. The total airspeed error for the DBD configuration is equal to 0.7544 knots. 

 

Figure 10.   Results for the UH-60A helicopter at 85 ft.; network configuration 14-25-25-1; 

DBD learning rule. 

NEURAL NETWORK RESULTS 
Total SD = 0.7544 

 
Actual  
Airspeed (kts) Mean of 

Airspeed (kts) 
Airspeed Error  
at 1 σ   (kts) 

Percent Error 
at 1 σ  

Abs. Maximum 
Error  (kts) 

5 4.8389 0.1628 3.2559% 0.4681 
15 11.3654 0.5467 3.4647% 4.5417 
25 24.5698 1.0986 4.3944% 2.2028 
35 38.0388 1.1142 3.1834% 4.9681 
45 45.1962 0.6442 1.4227% 1.2996 

Table 5.   Results for the UH-60A helicopter at 85 ft.; network configuration 14-25-25-1; 

DBD learning rule.  
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(4) 14-25-25-1 QUICKPROP.  Figure 11 and Table 6 present 

results obtained for this configuration. The RMS error for the quickprop learning rule is 

0.0711. The maximum predicted speed absolute value error is 4.6189 knots. Note that the 

results are very close to those obtained for the DBD configuration. Although the mean 

airspeed value at 15 knots is significantly lower than that of the target speed, the error SD 

is the largest at 25 knots. The overall network airspeed error SD is 0.7326 knots.  

NEURAL NETWORK RESULTS     
Total SD = 0.7326 

 
Actual 
 Airspeed (kts) Mean of 

Airspeed (kts) 
Airspeed Error 
at 1 σ   (kts) 

Percent Error 
at 1 σ   

Abs. Maximum 
Error  (kts) 

5 4.5007 0.1677 3.3546% 0.8191 
15 11.4068 0.6067 4.0444% 4.6189 
25 24.8524 1.1168 4.4673% 2.3644 
35 37.9663 0.8684 2.4811% 4.4915 
45 44.6973 0.5294 1.1764 1.1524 

Table 6.   Results for the UH-60A helicopter at 85 ft.; network configuration 14-25-25-1; 

Quickprop learning rule.  

 

Figure 11.   Results for the UH-60A helicopter at 85 ft.; network configuration 14-25-25-1; 

Quickprop learning rule.  
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b. 1-Hidden Layer BPNN 
Several one hidden layer BPNNs were implemented; the configurations 

considered were 14-8-1, 14-10-1, 14-12-1, 14-20-1, 14-22-1, 14-25-1, and 14-50-1. 

Results for best performing networks are shown below. 

(1) 14-20-1 NCD.  Table 7 and Figure 12 summarize the 

findings for this configuration. The 14-20-1 NCD model performs quite well for the 

velocity of 25 knots with the error SD of 0.5 knots and percent error of 2 %. For all other 

velocities, the error percentage is 4 %.  The RMS error is found to be 0.0407.  The 

maximum error is 3.3 knots at the speed of 5 knots and 35 knots. However, the accuracy 

of prediction is better than many 2-hidden layer BPNN. The overall error SD is ±  0.8394 

knots. 

 

 

Figure 12.   Results for the UH-60A helicopter at 85 ft.; network configuration 14-20-1; NCD 

learning rule.  

 



33 

NEURAL NETWORK RESULTS      
Total SD = 0.8394 

 
Actual  
Airspeed (kts) Mean of 

Airspeed (kts) 
Airspeed Error  
at 1 σ   (kts) 

Percent Error 
at 1 σ   

Abs. Maximum 
Error  (kts) 

5 3.6992 0.2008 4.0170% 3.3712 
15 13.7729 0.6762 4.5079% 1.6789 
25 25.0478 0.5373 2.1494% 1.2362 
35 35.6197 1.5618 4.4623% 3.3712 
45 45.4842 1.5915 3.5366% 2.8769 

 
Table 7.   Results for the UH-60A helicopter at 85 ft.; network configuration 14-20-1; NCD 

learning rule.  

(2) 14-20-1 Ext. DBD.  Table 8 and Figure 13 summarize the 

findings obtained for this configuration. Results show the RMS error is 0.0657 and that 

the error SD increases along with the speed. The maximum error is 3.7970 knots for a 35 

knots speed. The error SD is also the highest at this speed. However, results show a 

significant degradation of the airspeed prediction in % at 5 knots. The overall error SD is 

0.7002, which is quite better than that obtained with the other networks.  

 

Figure 13.   Results for the UH-60A helicopter at 85 ft.; network configuration 14-20-1; Ext. 

DBD learning rule.  
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NEURAL NETWORK RESULTS     

 Total SD = 0.7002 
 

Actual 
Airspeed (kts) Mean of 

Airspeed (kts) 
Airspeed Error 
 at 1 σ   (kts) 

Percent Error 
at 1 σ   

Abs. Maximum 
Error  (kts) 

5 2.8849 0.4173 8.3461% 2.9556 
15 17.4373 0.7170 4.7798% 3.2811 
25 23.7263 0.6597 2.6389% 2.3582 
35 36.9723 1.0187 2.9105% 3.7970 
45 46.1386 0.9508 2.1129% 2.6505 

 
Table 8.   Results for the UH-60A helicopter at 85 ft.; network configuration 14-20-1; Ext. 

DBD learning rule.  

2. RBFN Networks 
Figure 14 and Table 9 present findings obtained for the 14-200-1 RBFN 

configuration. Several RBFN network configurations were implemented. The best result 

was obtained with the 14-200-1 NCD configuration; where the RMS error is 0.0733. 

However, results also show a larger velocity variance and maximum error than those 

obtained with BPNN implementations. In addition, the maximum speed error is 9.2719 

knots, which is much larger than that observed with BPNN implementations. The error 

SD is around 1 knot at all speeds, except at 45 knots where it significantly increases to 

about 4 knots. The overall error SD is 1.634. Therefore, results showed that BPNN 

implementations are better suited than RBFN configurations for this problem. 

 
NEURAL NETWORK RESULTS  

 Total SD = 1.6340 
 
Actual 
Airspeed (kts) Mean of 

Airspeed (kts) 
Airspeed Error  
at 1 σ   (kts) 

Percent Error 
at 1 σ   

Abs. Maximum 
Error  (kts) 

5 2.1368 1.0915 21.8301% 5.4400 
15 14.3318 1.0551 7.0338% 2.7856 
25 25.6402 1.1621 4.6485% 2.9813 
35 35.9359 1.4807 4.2307% 3.8438 
45 44.0553 3.8565 8.5699% 9.2719 

 
Table 9.   Results for the UH-60A helicopter at 85 ft.; network configuration 14-200-1; 

RBFN NCD learning rule. 
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Figure 14.   Results for the UH-60A helicopter at 85 ft.; network configuration 14-200-1; 

RBFN NCD learning rule. 

 
3. Pruned BPNN 

Figure 15 and Table 10 present the findings for this configuration. The BPNN was 

implemented with a pruning capability embedded in the NeuralWare software to increase 

the prediction efficiency, where pruning is used to remove connections from the network 

when their contributions are very small [Ref. 6]. 

In light of the previous analyses, the 14-25-25-1 BPNN configuration with the 

NCD learning rule was chosen. In this scheme, data were presented to the network as 

before but the network performance was monitored against the previous ones during the 

training process after each 1000 iterations. The RMS error was compared at each 

“checkpoint”, and PE contributions checked. At that point the training stopped when the 

RMS was larger than at the last check, otherwise, it continued for the next 1000 

iterations. During this process, PEs with contributions smaller than a given tolerance 
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were disabled, which reduces network complexity and increases generalization efficiency 

[Ref. 4]. 

In this analysis, the process went up to 46000 iterations and 7 PEs in the first 

hidden layer were disabled. Results show that the RMS error is 0.0355 which is best 

among all architectures investigated. The maximum predicted speed error is ± 3.35 knots, 

which occurs when the actual speed is 35 knots. Errors for low velocities are below ± 1.8 

knots. The error percentage for 5, 15 and 35 knots is about 4 % and about 2.5 % for other 

speeds. Results show that the predicted speed mean values are very close to the target 

values when compared with previous networks. Finally, the overall error SD is 0.7167, 

which is quite good.  

 

Figure 15.   Results for the UH-60A helicopter at 85 ft.; network configuration 14-25-25-1; 

NCD (Pruned) learning rule.  
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NEURAL NETWORK RESULTS   
Total SD = 0.7167 

 
Actual  
Airspeed (kts) Mean of 

Airspeed (kts) 
Airspeed Error 
 at 1 σ   (kts) 

Percent Error 
at 1 σ  

Abs. Maximum 
Error  (kts) 

5 3.6789 0.2113 4.2253% 1.7089 
15 14.5970 0.6322 4.2147% 1.6131 
25 24.9281 0.6610 2.6440% 1.2897 
35 36.0136 1.3438 3.8395% 3.3496 
45 46.0334 1.0039 2.2309% 2.6618 

 
Table 10.   Results for the UH-60A helicopter at 85 ft.; network configuration 14-25-25-1; 

NCD (Pruned) learning rule 

The above results showed that the networks with NCD and Ext. DBD learning 

rules and pruned network have better performance than those obtained with other 

networks. Therefore, all other analyses, UH-60A in-ground effect, baseline data and OH-

6A analyses, were performed using these configurations only. 

4.  In-Ground Effect Analysis 
In-ground effect analysis of the UH-60A helicopter is performed when the 

pressure altitude is at sea level and the altimeter above ground is at 20 feet. The sideslip 

angle parameter was added to the NN inputs. Three network architectures were used for 

the in-ground effect analysis; 15-25-25-1 BPNN with NCD and Ext. DBD learning rules, 

and 15-18-25-1 BPNN with the NCD learning rule. 

a. 15-25-25-1 BPNN NCD 
Figure 16 and Table 11 summarize the findings for this configuration. The 

RMS error is 0.0374 and the maximum error is 3 knots (at 35 knots). The error SD is also 

the highest at this speed. The network performance at low speeds and at 45 knots is quite 

good, with the error SD of less than 1.2, but the error SD goes up to 1.8 knots for a 35 

knots speed, which corresponds to about 5 %. The overall airspeed error SD is 0.8469 

knots.  
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NEURAL NETWORK RESULTS 
 Total SD = 0.8469 

 
Actual 
 Airspeed (kts) Mean of 

Airspeed (kts) 
Airspeed Error  
at 1 σ   (kts) 

Percent Error 
at 1 σ   

Abs. Maximum 
Error  (kts) 

5 4.1567 0.2334 4.6686% 1.3234 
15 14.0652 0.5405 3.6033% 2.1345 
25 25.8750 0.6741 2.6963% 2.5196 
35 35.5357 1.8206 5.2017% 3.0036 
45 45.2548 1.2123 2.6941% 2.2981 

 
Table 11.   Results for the UH-60A helicopter at 20 ft.; network configuration 15-25-25-1; 

NCD learning rule.  

 
Figure 16.   Results for the UH-60A helicopter at 20 ft.; network configuration 15-25-25-1; 

NCD learning rule.  

b. 15-25-25-1 BPNN Ext. DBD 
Figure 17 and in Table 12 present the results for this configuration. The 

RMS error obtained is 0.0637. Note that the maximum error occurs when the helicopter is 

moving at 45 knots with a -600 angle, unlike other networks. Moreover, the maximum 

error, 4.81 knots, is higher than that obtained in most networks. Apparently, the error SD 

is also larger at 45 knots. Although the error SD at low speeds is less than 0.88 knots, the 

error percentage is about 6%. Overall, the error SD is 0.8308 knots.  
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NEURAL NETWORK RESULTS  
 Total SD = 0.8308 

 
Actual  
Airspeed (kts) Mean of 

Airspeed (kts) 
Airspeed Error  
at 1 σ   (kts) 

Percent Error 
at 1 σ  

Abs. Maximum 
Error  (kts) 

5 2.5383 0.3051 6.1027% 3.1938 
15 16.7466 0.8875 5.9166% 3.7167 
25 23.4740 0.5188 2.0750% 2.1472 
35 35.6272 0.9530 2.7229% 2.1010 
45 46.5186 1.6658 3.7018% 4.8112 

 
Table 12.   Results for the UH-60A helicopter at 20 ft.; network configuration 15-25-25-1; 

Ext. DBD learning rule. 

 

Figure 17.   Results for the UH-60A helicopter at 20 ft.; network configuration 15-25-25-1; 

Ext. DBD learning rule. 

c. 15-25-25-1 BPNN NCD (Pruned) 
Table 13 and Figure 18 present the results for this configuration. Seven 

PEs were disabled in the first hidden layer. The RMS error is about 0.0724. The 

maximum error is 5.2 knots at 35 knots. The error SD is also larger at this speed. The 
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overall error SD is 0.8884 knots which is slightly larger than the NCD 15-25-25-1 

network. 

NEURAL NETWORK RESULTS  
 Total SD = 0.8884 

 
Actual  
Airspeed (kts) Mean of 

Airspeed (kts) 
Airspeed Error  
at 1 σ   (kts) 

Percent Error 
at 1 σ  

Abs. Maximum 
Error  (kts) 

5 4.7761 0.2380 4.7603% 0.7986 
15 11.4320 0.4591 3.0609% 4.8662 
25 24.8531 1.3065 5.2260% 2.8201 
35 37.9958 1.4152 4.0435% 5.2195 
45 45.4203 0.7768 1.7263% 1.9679 

 
Table 13.   Results for the UH-60A helicopter at 20 ft.; network configuration 15-25-25-1; 

NCD (Pruned) learning rule.  

 

Figure 18.   Results for the UH-60A helicopter at 20 ft.; network configuration 15-25-25-1; 

NCD (Pruned) learning rule.  

d. 15-18-25-1 BPNN NCD 
Table 14 and Figure 19 present the results for this configuration. This 

setup is implemented as an alternative to the pruned network to reduce the network 



41 

training time and complexity. The RMS error is about 0.0384. The maximum error is 

2.27 knots at 35 knots. We note the error SD is larger at this speed. The overall error SD 

is 0.8853 knots, which is slightly higher than the NCD 15-25-25-1 network.  

NEURAL NETWORK RESULTS  
Total SD = 0.8853 

 
Actual  
Airspeed (kts) Mean of 

Airspeed (kts) 
Airspeed Error 
at 1 σ   (kts) 

Percent Error 
at 1 σ   

Abs. Maximum 
Error  (kts) 

5 3.7156 0.2597 5.1943% 1.7481 
15 15.0498 0.6162  4.1081% 1.3976 
25 24.1842 0.9682 3.8726% 1.7528 
35 34.6029 1.5548 4.4424% 2.2788 
45 45.5511 1.2541 2.7870% 2.2318 

 
Table 14.   Results for the UH-60A helicopter at 20 ft.; network configuration 15-18-25-1; 

NCD learning rule. Results of UH-60A for 15-18-25-1 NCD. 

 

Figure 19.   Results for the UH-60A helicopter at 20 ft.; network configuration 15-18-25-1; 

NCD learning rule. 
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5. Baseline Data Set Analysis 

The baseline data set was formed combining both 20 ft. and 85 ft. data sets. First, 

the network was trained with this data set, and the network performance was measured 

using the baseline test set. Then, using single condition test data sets separately, the 

network performance was evaluated for IGE and OGE conditions. As a result, the 

network-training time increased, due to the increase in the number of data points in the 

baseline data set. 

a. 15-18-25-1 BPNN NCD 
Results for this setup are shown in Table 15 and in Figure 20. They show 

that the RMS error is 0.0755. The maximum error is about 6.3 knots when the speed is 35 

knots. The error SD of 1.4224 knots is higher than that observed with other baseline 

networks and the single condition data networks. The error percentage for all speeds at 1 

σ is about 6 %. The error SD is higher at fast speed, especially when the sideslip angle is 

–60 and 60 degrees.  

 

Figure 20.   Results for the UH-60A helicopter with baseline data; network configuration 15-

18-25-1; NCD learning rule. 
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NEURAL NETWORK RESULTS   
Total SD = 1.4224 

 
Actual 
Airspeed (kts) Mean of 

Airspeed (kts) 
Airspeed Error 
at 1 σ   (kts) 

Percent Error 
at 1  σ  

Abs. Maximum 
Error  (kts) 

5 2.9564 0.3565 7.1292% 2.8415 
15 16.4937 0.9016 6.0108% 4.2300 
25 26.0262 1.5856 6.3426% 5.1133 
35 38.8061 2.3985 6.8529% 6.2953 
45 45.4173 2.1685 4.8188% 4.1447 

 
Table 15.   Results for the UH-60A helicopter with baseline data; network configuration 15-

18-25-1; NCD learning rule. 

b. 15-25-25-1 BPNN NCD 
Results are depicted in Figure 21 and Table 16. They show that the RMS 

error is 0.0762, and the maximum error is 6.2424 knots at 45 knots. The airspeed error 

SD is larger when the speed is 25 knots. The largest error percentage is equal to 9 % (at 5 

knots). The overall network error SD is 1.5664 knots. 

 

Figure 21.   Results for the UH-60A helicopter with baseline data; network configuration 15-

25-25-1; NCD learning rule. 
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NEURAL NETWORK RESULTS  
Total SD = 1.5664 

 
Actual  
Airspeed (kts) Mean of 

Airspeed (kts) 
Airspeed Error  
at 1 σ   (kts) 

Percent Error 
at 1 σ   

Abs. Maximum 
Error  (kts) 

5 3.7732 0.4005 8.0108% 1.8981 
15 13.4327 1.0494 6.5960% 3.1877 
25 26.4841 2.2515 9.0058% 6.1337 
35 38.4891 1.9183 5.4810% 5.1834 
45 43.3588 1.9560 4.3466% 6.2424 

 
Table 16.   Results for the UH-60A helicopter with baseline data; network configuration 15-

25-25-1; NCD learning rule. 

c. 15-25-25-1 BPNN Ext. DBD 
Table 17 and in Figure 22 present the findings for this configuration. 

Results show that the RMS error is 0.0501, which is better than that of the NCD scheme. 

The maximum error is about 4.5 knots (at 35 knots). We note the predicted speed mean 

values are close to the target speeds. The error percentage at the speed of 5 knots is about 

10 %. The NN prediction is quite good at the speed of 45 knots. The overall network 

error SD is 0.7320, which is the best obtained with the baseline data set.  

 
 

NEURAL NETWORK RESULTS      
 Total SD = 0.7320 

 
Actual  
Airspeed (kts) Mean of 

Airspeed (kts) 
Airspeed Error 
 at 1 σ   (kts) 

Percent Error 
at 1 σ   

Abs. Maximum 
Error  (kts) 

5 3.2079 0.5382 10.7647% 2.8105 
15 16.2084 0.6293 4.1953% 2.5304 
25 25.0000 0.7696 3.0782% 2.3555 
35 37.3300 1.0832 3.0949% 4.5313 
45 45.9893 0.8478 1.8839% 1.9112 
 

Table 17.   Results for the UH-60A helicopter with baseline data; network configuration 15-

25-25-1; Ext. DBD learning rule. 
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Figure 22.   Results for the UH-60A helicopter with baseline data; network configuration 15-

25-25-1; Ext. DBD learning rule. 

d. 15-25-25-1 BPNN NCD (Pruned) 
Table 18 and Figure 23 present the findings for this configuration. Results 

show that one PE was pruned in the first hidden layer. The resulting RMS error is 0.1213, 

and the maximum error at 45 knots is 8.6414 knots. The largest error SD and error 

percentage (11.5 %) are obtained for a 25 knots speed. The overall network error SD is 

2.0830 knots.  

NEURAL NETWORK RESULTS      
 Total SD = 2.0830 

 
Actual 
Airspeed (kts) Mean of 

Airspeed (kts) 
Airspeed Error 
 at 1 σ   (kts) 

Percent Error 
at 1 σ   

Abs. Maximum 
Error  (kts) 

5 2.9069 0.3420 6.8404% 2.8877 
15 9.8217 1.1116 7.4108% 7.2736 
25 23.5765 2.8864 11.5454% 6.5795 
35 38.3384 2.8346 6.6262% 7.1468 
45 43.8399 2.9818 1.8839% 8.6414 

Table 18.   Results for the UH-60A helicopter with baseline data; network configuration 15-

25-25-1; NCD (Pruned) learning rule. 
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Figure 23.   Results for the UH-60A helicopter with baseline data; network configuration 15-

25-25-1; NCD (Pruned) learning rule. 

e. Baseline Data Set IGE Analysis 
(1) 15-25-25-1 BPNN NCD.  Results are shown in Table 19 

and Figure 24. They show the RMS error is 0.0759. The maximum error is 6.2 knots, 

which is almost the same for speeds 25 knots and higher. The network performance at 

high speeds is better than that of at low speeds since the percent error at 35 and 45 knots 

is about 5 %, whereas at lower speeds it is twice that number.  The overall error SD is 

1.5516 knots. 

NEURAL NETWORK RESULTS   
Total SD = 1.5516 

 
Actual 
Airspeed (kts) Mean of 

Airspeed (kts) 
Airspeed Error  
at 1 σ   (kts) 

Percent Error 
at 1 σ   

Abs. Maximum 
Error  (kts) 

5 3.7699 0.5063 10.1268% 1.8981 
15 13.7003 1.1242 7.4947% 2.7778 
25 26.5671 2.1650 8.6599% 6.1337 
35 38.3892 1.7970 5.1342% 5.1715 
45 42.8593 2.0669 4.5931% 6.2424 

Table 19.   Results for the UH-60A helicopter at 20 ft with baseline data; network 

configuration 15-25-25-1; NCD learning rule. 
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Figure 24.   Results for the UH-60A helicopter at 20 ft with baseline data; network 

configuration 15-25-25-1; NCD learning rule. 

(2) 15-25-25-1 BPNN Ext. DBD. Results are shown in Table 

20 and Figure 25. They show the RMS error is 0.0499. The maximum error of 4.5 knots 

is obtained at a 35 knots speed. Note that the network performance is quite good when 

compared with the NCD scheme.  The overall error SD is 0.6505 knots, which is 

significantly less than it is in the NCD scheme.  

NEURAL NETWORK RESULTS  
Total SD = 0.6505 

 
Actual  
Airspeed (kts) Mean of 

Airspeed (kts) 
Airspeed Error 
 at 1 σ   (kts) 

Percent Error 
at 1 σ   

Abs. Maximum 
Error  (kts) 

5 3.5127 0.4383 8.7656% 2.2475 
15 16.4063 0.6193  4.1287% 2.5304 
25 25.1852 0.7545 3.0179% 2.3505 
35 37.6802 0.9720 2.7772% 4.5313 
45 46.0822 0.4932 1.0961% 1.8867 

 
Table 20.   Results for the UH-60A helicopter at 20 ft with baseline data; network 

configuration 15-25-25-1; Ext. DBD learning rule. 
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Figure 25.   Results for the UH-60A helicopter at 20 ft with baseline data; network 

configuration 15-25-25-1; Ext. DBD learning rule. 

 
(3) 15-25-25-1 BPNN NCD (Pruned). Results are shown in 

Table 21 and Figure 26. They show that the RMS error is 0.0901. The maximum speed 

error of 7.9 knots is obtained for a 45 knots speed. We note that the network performance 

is not good when the pruning facility is enabled.  The overall error SD is 1.7173 knots. 

NEURAL NETWORK RESULTS  
Total SD = 1.7173 

 
Actual  
Airspeed  (kts) Mean of 

Airspeed (kts) 
Airspeed Error 
 at 1 σ   (kts) 

Percent Error 
at 1 σ   

Abs. Maximum 
Error  (kts) 

5 4.3654 0.2933 5.8653% 1.1256 
15 11.5338 1.1787  7.8578% 4.9166 
25 23.9066 2.2817 9.1268% 4.0707 
35 37.3058 2.1850 6.2429% 4.4207 
45 42.1901 2.5806 5.7346% 7.9128 

 
Table 21.   Results for the UH-60A helicopter at 20 ft with baseline data; network 

configuration 15-25-25-1; NCD (Pruned) learning rule. 
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Figure 26.   Results for the UH-60A helicopter at 20 ft with baseline data; network 

configuration 15-25-25-1; NCD (Pruned) learning rule. 

f. Baseline Data Set OGE Analysis 
(1) 15-25-25-1 BPNN NCD.  Findings for this configuration 

are presented in Table 22 and Figure 27. Results show that the RMS error is 0.0766. The 

maximum error is 5.86 knots. The network performance at a speed of 25 knots is not 

good, as the error SD is 2.3 knots at that speed.  The error percentage is about 5 % for 

speeds other than 25 knots but it increases up to 9 % for 25 knots. The overall error SD is 

1.5516 knots.  

NEURAL NETWORK RESULTS    
Total SD = 1.5516 

 
Actual 
 Airspeed (kts) Mean of 

Airspeed (kts) 
Airspeed Error 
at 1 σ   (kts) 

Percent Error 
at 1 σ   

Abs. Maximum 
Error  (kts) 

5 3.7779 0.2569 5.1390% 1.6144 
15 13.1631 0.8966 5.9771% 3.1890 
25 26.4013 2.3416 9.3664% 5.8619 
35 38.5880 2.0476 5.8502% 5.1844 
45 43.8585 1.7192 3.8204% 4.3961 

Table 22.   Results for the UH-60A helicopter at 85 ft with baseline data; network 

configuration 15-25-25-1; NCD learning rule. 
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Figure 27.   Results for the UH-60A helicopter at 85 ft with baseline data; network 

configuration 15-25-25-1; NCD learning rule. 

(2) 15-25-25-1 BPNN Ext. DBD.   Table 23 and in Figure 28 

present the results for this configuration. Results show that the RMS error is 0.0482. The 

maximum error observed at 35 knots is equal to 3.8 knots. Note that this error is smaller 

than that observed in the NCD scheme, and the network performance is quite good when 

compared with the NCD scheme for the OGE baseline setup. At low speeds, the error SD 

is about 0.5 knots. The network performance is quite good for all speeds except for 5 

knots where the error percentage increases to 9 %. The overall error SD is 0.6850 knots. 
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Figure 28.   Results for the UH-60A helicopter at 85 ft with baseline data; network 

configuration 15-25-25-1; Ext. DBD learning rule. 

 
NEURAL NETWORK RESULTS  

 Total SD = 0.6850 
 

Actual 
Airspeed (kts) Mean of 

Airspeed (kts) 
Airspeed Error 
at 1 σ   (kts) 

Percent Error 
at 1 σ   

Abs. Maximum 
Error  (kts) 

5 2.9227 0.4746 9.5519% 2.8377 
15 15.8606 0.5962  3.9746% 1.9213 
25 24.8085 0.6801 2.7205% 1.5601 
35 36.8469 1.0210 2.9171% 3.8006 
45 45.9612 0.9043 2.0096% 1.9007 

 
Table 23.   Results for the UH-60A helicopter at 85 ft with baseline data; network 

configuration 15-25-25-1; NCD learning rule. 

(3) 15-25-25-1 BPNN NCD (Pruned).   Table 24 and in 

Figure 29 present the results for this configuration. Results show that the RMS error is 

0.1087. The maximum error observed for a 35 knots speed is equal to 7.14 knots. Note 

that the network performance degrades when the pruning facility is enabled. The overall 

error SD is 1.8642 knots.  
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Figure 29.   Results for the UH-60A helicopter at 85 ft with baseline data; network 

configuration 15-25-25-1; NCD (Pruned) learning rule. 

 
NEURAL NETWORK RESULTS  

 Total SD = 1.8642 
 

Actual  
Airspeed (kts) Mean of 

Airspeed (kts) 
Airspeed Error  
at 1 σ   (kts) 

Percent Error 
at 1 σ   

Abs. Maximum 
Error  (kts) 

5 3.7243 0.1567 3.1338% 1.6318 
15 10.3127 0.5639  3.7592% 5.7803 
25 24.6236 2.3566 9.4263% 4.6493 
35 39.1423 3.2081 9.1660% 7.1416 
45 45.3547 2.8266 6.2814% 3.5760 

 
Table 24.   Results for the UH-60A helicopter at 85 ft with baseline data; network 

configuration 15-25-25-1; NCD (Pruned) learning rule. 

6. Simplifying The Data Set Using Eigenvalues and Eigenvectors 

Preprocessing the data to obtain a simplified NN is often useful. Goff developed a 

NN helicopter airspeed prediction study similar to the Haas and McCool study [Ref. 20]. 

Goff analyzed the each input contribution to the network performance and determined 

that 11 of the 16 inputs played an important role. Results obtained by preprocessing the 
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data and simplifying the network inputs were quite successful. His study on the Lynx 

MK9 showed that airspeed in the low speed environment could be predicted with an error 

of +/-3.1 knots at 1 σ [Ref. 20]. 

Another way to decrease the NN input dimension and simplify the network 

structure by projecting the high-dimensional data onto a lower dimensional input space 

using principal component analysis (PCA). PCA is applied by considering the input data 

set as a matrix, A, and translating this matrix to a diagonal or upper triangular form to 

compute its eigenvalues and eigenvectors. Eigenvectors are the normal modes of the 

system and they act independently. The beauty of eigenvalues and eigenvectors is that 

they capture the characteristics and behavior of the whole system. The key equation for 

eigenvalues and eigenvectors is: 

xAx λ= ,                                                                                                          (4.1) 

where λ is an eigenvalue of the matrix A and the vector x is the associated eigenvector. 

Most vectors x will not satisfy this equation. A typical x changes direction when 

multiplied by A, so that Ax is not a multiple of x. Thus, only certain special numbers are 

eigenvalues and only certain special vectors are eigenvectors [Ref. 18].  

After obtaining the eigenvalues and eigenvectors of the single condition data set, 

dominating eigenvalues were selected. It was observed that six of the eigenvalues were 

the dominating eigenvalues, leading to a input data sub-matrix with a dimension of 

[14x6]. This sub-matrix was multiplied by the whole data set again. The purpose of this 

procedure was to reduce the number of inputs to 6 while still capturing the properties 

from all inputs. Several network architectures were implemented using this simplified 

data set. Network configurations with the best performances are described in the 

following sections. Note that none of these performed as well as the best network trained 

with the full data sets. 

a. 6-18-18-1 BPNN Ext. DBD 
Results of this setup are shown in Figure 30 and in Table 25. They show 

that the RMS error is 0.0565. Although the maximum error of 5.4 knots is at 45 knots, the  

11% error percentage is higher for a 5 knots speed. The overall error SD is 1.1692 knots. 
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The network performance at low speeds is not as satisfactory as it is at fast speeds since 

the percent error is quite large at low speeds.  

 

Figure 30.   Results for the UH-60A helicopter at 85 ft with simplified data; network 

configuration 6-18-18-1; Ext. DBD learning rule. 

NEURAL NETWORK RESULTS    
  Total SD = 1.1692 

 
Actual 
Airspeed (kts) Mean of 

Airspeed  (kts) 
Airspeed Error  
at 1 σ   (kts)  

Percent Error 
at 1 σ   

Abs. Maximum 
Error  (kts) 

5 2.9375 0.5879 11.7571% 3.0269 
15 15.3870 0.7861  5.2444% 2.2.1139
25 23.8447 1.2453 4.9813% 3.5517 
35 35.4789 1.4587 4.1677% 2.5422 
45 43.5555 2.2160 4.9244% 5.3797 

Table 25.   Results for the UH-60A helicopter at 85 ft with simplified data; network 

configuration 6-18-18-1; Ext. DBD learning rule. 

b. 6-18-18-1 BPNN NCD (Pruned) 
Results are depicted in Figure 31 and Table 26. One PE in the first layer 

was disabled by the NN. Results show that the RMS error is 0.0648. The maximum error 

is over 5.0 knots at speeds of 25 and 35 knots. The error SD is also larger at those speeds. 

We note that, the maximum error percentage is 7.95 % at a speed of 5 knots, and the 



55 

overall error SD is 1.1942 knots. In conclusion, results showed that the network 

performance is not as good as that obtained when using the NCD learning rule without 

the pruning facility.  

 

Figure 31.   Results for the UH-60A helicopter at 85 ft with simplified data; network 

configuration 6-18-18-1; NCD (Pruned) learning rule. 

 
NEURAL NETWORK RESULTS    

  Total SD = 1.1942 
 

Actual 
Airspeed (kts) Mean of 

Airspeed  (kts) 
Airspeed Error  
at 1 σ   (kts)  

Percent Error 
at 1 σ   

Abs. Maximum 
Error  (kts) 

5 3.5084 0.3977 7.9568% 1.9809 
15 14.7297 0.5445  3.6297% 1.1050 
25 26.7339 1.8057 7.2229% 5.4495 
35 38.2674 1.8897 5.3992% 5.3390 
45 43.6582 0.9459 2.1020% 2.6491 

 
Table 26.   Results for the UH-60A helicopter at 85 ft with simplified data; network 

configuration 6-18-18-1; NCD (Pruned) learning rule. 
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c. 6-18-18-1 BPNN NCD 
Figure 32 and Table 27 present the results for this configuration. Results 

show that the RMS error equal to 0.06561 is the best among all the configurations 

investigated with the simplified data. The maximum error is about 4 knots when the 

helicopter is moving at a speed of 35 knots with a 300 sideslip angle to the left. The error 

SD is above 1.5 knots at that speed. The error percentage for each speed is about 5 %, 

except for a 45 knots speed, and the overall error SD is equal to 1.0032 knots.  

 

Figure 32.   Results for the UH-60A helicopter at 85 ft with simplified data; network 

configuration 6-18-18-1; NCD learning rule  

NEURAL NETWORK RESULTS     
 Total SD = 1.0032 

 
Actual 
Airspeed (kts) Mean of 

Airspeed  (kts) 
Airspeed Error  
at 1 σ   (kts)  

Percent Error 
at 1 σ   

Abs. Maximum 
Error  (kts) 

5 2.7558 0.2888 5.5765% 2.7471 
15 15.3714 0.6022 4.0149% 1.9253 
25 25.0220 1.3322 5.3287% 2.7581 
35 37.1657 1.5913 4.5467% 3.8912 
45 43.5339 1.2950 2.8777% 3.1240 

Table 27.   Results for the UH-60A helicopter at 85 ft with simplified data; network 

configuration 6-18-18-1; NCD learning rule. 
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Results showed that the network with simplified data performs worse than 

the network with the pruning facility enabled. Therefore, the simplified data was not used 

for OH-6A analyses. 

B. ANALYSIS OF THE OH-6A MODEL 

1.  Out of Ground Effect Analysis at Sea Level 

This section presents results of the OGE analysis for the OH-6A helicopter with 

the simulator altimeter set at 100 feet AGL. The network was trained using the single 

condition data set obtained for this altitude similarly to the UH-60A analysis. Results for 

the OGE analysis using the combined data set are shown in the OH-6A Baseline Analysis 

Section.  Note that the engine torque input parameter for the NN model was removed due 

to the limitation of the engine model parameters for the OH-6A helicopter in the 

FLIGHTLAB simulator. Therefore, a 14-25-25-1 setup was used for all OH-6A model 

analyses. Finally, in light of the results obtained from the UH-60A helicopter analysis, 

only the NCD and Ext. DBD learning rules were investigated. 

a. 14-25-25-1 BPNN NCD 
Results for this setup are given in Figure 33 and Table 28. They show that 

the RMS error is 0.0609. The 5 knots maximum speed error is observed at 35 knots, 

while the absolute maximum error is less than 3 knots at other speeds. The airspeed error 

SD is less than 1 knot except for 45 knots. The overall error SD is 0.7921 knots. 

 

NEURAL NETWORK RESULTS   
Total SD = 0.7921 

 
Actual 
Airspeed (kts) Mean of 

Airspeed (kts) 
Airspeed Error  
at 1 σ   (kts) 

Percent Error 
at 1 σ   

Abs. Maximum 
Error  (kts) 

5 4.2398 0.4797 9.5947% 1.5363 
15 12.7387 0.7130 4.7531% 3.3062 
25 25.6227 0.8655 3.4618% 2.0925 
35 38.6028 0.8703 2.4865% 5.2048 
45 44.8812 1.2253 2.7229% 1.9604 

 
Table 28.   Results for the OH-6A helicopter at 100 ft (SL); network configuration             

14-25-25-1; NCD learning rule. 
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Figure 33.   Results for the OH-6A helicopter at 100 ft (SL); network configuration             

14-25-25-1; NCD learning rule. 

b. 14-25-25-1 BPNN Ext. DBD 
Results are shown in Figure 34 and Table 29. They show that the RMS 

error is 0.0735. Note that the absolute maximum error is about 5 knots at the speed of 35 

knots, but the overall error SD of 1.3207 knots is larger than that observed for the NCD 

setup. For all speeds, except for 45 knots, the error percentage is 5 % and over. 

NEURAL NETWORK RESULTS     
Total SD = 1.3207 

 
Actual  
Airspeed (kts) Mean of 

Airspeed (kts) 
Airspeed Error 
at 1 σ   (kts) 

Percent Error 
at 1 σ   

Abs. Maximum 
Error  (kts) 

5 3.6946 0.4724 9.4478% 2.3008 
15 13.3800 1.2846 8.5642% 3.8498 
25 25.3109 1.2145 4.8578% 3.2181 
35 36.3450 2.6079 7.7543% 5.0472 
45 43.8989 1.1780 2.6179% 3.2799 

 
Table 29.   Results for the OH-6A helicopter at 100 ft (SL); network configuration              

14-25-25-1; Ext. DBD learning rule. 
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Figure 34.   Results for the OH-6A helicopter at 100 ft (SL); network configuration             

14-25-25-1; Ext. DBD learning rule. 

c. 14-25-25-1 BPNN NCD (Pruned) 
Figure 35 and Table 30 present the findings for this configuration. Results 

show that the RMS error is 0.0669. The maximum speed error is about 4.6 knots at a 

speed of 35 knots. The error SD is less than 0.88 knots except for a 45 knots speed. The 

network performance is quite good except for 5 knots as the error percentage is equal to 9 

%, which is very large at that speed. The overall error SD is 0.759 knots.  

NEURAL NETWORK RESULTS 
Total SD = 0.7590 

 
Actual 
Airspeed (kts) Mean of 

Airspeed (kts) 
Airspeed Error 
at 1 σ   (kts) 

Percent Error 
at 1 σ   

Abs. Maximum 
Error  (kts) 

5 3.9667 0.4976 9.9521% 1.9224 
15 12.0952 0.6239 4.1595% 4.0568 
25 25.1773 0.8877 3.5509% 1.7791 
35 38.4750 0.6479 1.8510% 4.6989 
45 44.9067 1.2291 2.7914% 1.9686 

Table 30.   Results for the OH-6A helicopter at 100 ft (SL); network configuration             

14-25-25-1; NCD (Pruned) learning rule. 
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Figure 35.   Results for the OH-6A helicopter at 100 ft (SL); network configuration             

14-25-25-1; NCD (Pruned) learning rule. 

2.  In-Ground Effect Analysis at Sea Level 
The OH-6A helicopter in-ground effect analysis was performed at 12 ft AGL. 

Same network architectures as those considered with out-of-ground analyses were 

considered. Results are presented below. 

a. 14-25-25-1 BPNN NCD 
Results are given in Table 31 and Figure 36. They show that the RMS 

error for this architecture is 0.0592. The maximum error is 5 knots for a speed equal to 35 

knots. The percentage of error at 1 σ is about 3% for all speeds except for 5 knots. The 

speed error SD gets larger at speeds above 25 knots. The overall error SD is 0.8465 

knots.  



61 

 

Figure 36.   Results for the OH-6A helicopter at 12 ft (SL); network configuration               

14-25-25-1; NCD learning rule. 

 
NEURAL NETWORK RESULTS    

 Total SD = 0.8465 
 

Actual  
Airspeed (kts) Mean of 

Airspeed (kts) 
Airspeed Error  
at 1 σ   (kts) 

Percent Error 
at 1 σ   

Abs. Maximum 
Error  (kts) 

5 4.4013 0.4882 9.7633% 1.4300 
15 13.0112 0.3802 2.5348% 2.7769 
25 25.9480 1.1424 4.5695% 2.7853 
35 38.5135 0.9581 2.7373% 5.1048 
45 45.3026 1.2993 2.8872% 2.1848 

 
Table 31.   Results for the OH-6A helicopter at 12 ft (SL); network configuration               

14-25-25-1; NCD learning. 

 
b. 14-25-25-1 BPNN Ext. DBD 
Table 32 and Figure 37 present the findings for this configuration. Results 

show that the RMS error is 0.062. The maximum error is equal to 6 knots (at 35 knots). 

The maximum error percentage is 12 % and occurs at 5 knots. The network performance 

is quite good at 45 knots with an error SD of 0.8 knots. We note that the overall error SD 

of 0.9678 is slightly higher than that of obtained with the NCD scheme.  
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NEURAL NETWORK RESULTS         
Total SD = 0.9678 

 
Actual 
Airspeed (kts) Mean of 

Airspeed (kts) 
Airspeed Error  
at 1 σ   (kts) 

Percent Error 
at 1 σ   

Abs. Maximum 
Error  (kts) 

5 4.9451 0.6122 12.2449% 1.1009 
15 15.4143 0.6925 4.6168% 1.6649 
25 27.1087 1.1644 4.6577% 3.7000 
35 38.7739 1.6571 4.7345% 5.9939 
45 45.7621 0.8066 1.7952% 2.0848 

 
Table 32.   Results for the OH-6A helicopter at 12 ft (SL); network configuration               

14-25-25-1; Ext. DBD learning rule.  

 

Figure 37.   Results for the OH-6A helicopter at 12 ft (SL); network configuration               

14-25-25-1; Ext. DBD learning rule. 

c. 14-25-25-1 BPNN NCD (Pruned) 
Figure 38 and Table 33 present the results for this setup. Results show that 

the RMS error is 0.0674 and the maximum error of 4.4 knots occurs at 35 knots. Note 

that the maximum error is about 2 knots for all other speeds. The error SD is the largest at 

25 and 45 knots. The overall network error SD is 0.8803 knots.  
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NEURAL NETWORK RESULTS 
Total SD = 0.8803 

 
Actual 

Airspeed (kts) Mean of 
Airspeed (kts) 

Airspeed Error  
at 1 σ   (kts) 

Percent Error 
at 1 σ   

Abs. Maximum 
Error  (kts) 

5 4.1006 0.6088 12.1766% 1.9135 
15 12.2608 0.3937 2.6246% 3.4638 
25 25.5791 1.1830 4.7320% 2.5694 
35 38.5929 0.5935 1.6956% 4.4157 
45 45.1430 1.4917 3.3148% 2.0239 

 
Table 33.   Results for the OH-6A helicopter at 12 ft (SL); network configuration               

14-25-25-1; NCD (Pruned) learning rule.  

 

Figure 38.   Results for the OH-6A helicopter at 12 ft (SL); network configuration               

14-25-25-1; NCD (Pruned) learning rule. 

3.  OH-6A Baseline Data Analysis at Sea Level 
The baseline data set was formed by combining both 12 ft. and 100 ft. data sets. 

First the network was trained with this combined data set, and the network performance 

was measured with the baseline test set. Then, using single condition test data sets 

separately, the network performance was evaluated for IGE and OGE conditions.  
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a. 14-25-25-1 BPNN NCD 
Results for this configuration are shown in Figure 39 and Table 34. They 

show that the RMS error is 0.0622. The absolute maximum speed error occurs at 35 knots 

and is equal to 4.82 knots. The airspeed error SD at 1 σ is more than 1 knot at the speed 

of 25 knots and over. The overall error SD is 1.2 knots. 

 

Figure 39.   Results for the OH-6A helicopter with baseline data (SL); network configuration 

14-25-25-1; NCD learning rule. 

NEURAL NETWORK RESULTS 
Total SD = 1.1926 

 
Actual  
Airspeed (kts) Mean of 

Airspeed (kts) 
Airspeed Error  
at 1 σ   (kts) 

Percent Error 
at 1 σ   

Abs. Maximum 
Error  (kts) 

5 3.6199 0.4348 8.6964% 2.3155 
15 13.2606 0.4590 3.0599% 2.9471 
25 25.8467 1.6476 6.5904% 4.3737 
35 37.8501 1.1617 3.3190% 4.8224 
45 44.8255 2.0805 4.6234% 2.8179 

 
Table 34.   Results for the OH-6A helicopter with baseline data (SL); network configuration               

14-25-25-1; NCD learning rule. 
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b. 14-25-25-1 BPNN Ext. DBD 
Table 35 and Figure 40 present the results for this setup. Results show that 

the RMS error is 0.0687. The maximum speed error observed is 7.5 knots for 35 knots. 

At most speeds, the error SD at 1 σ is more than 1.2 knots. Hence, the error percentages 

are also larger when compared with other network performances. The overall error SD is 

1.4071 knots.  

 

Figure 40.   Results for the OH-6A helicopter with baseline data (SL); network configuration               

14-25-25-1; Ext. DBD learning rule. 

NEURAL NETWORK RESULTS 
Total SD = 1.4071 

 
Actual 
Airspeed (kts) Mean of 

Airspeed (kts) 
Airspeed Error  
at 1 σ   (kts) 

Percent Error 
at 1 σ   

Abs. Maximum 
Error  (kts) 

5 2.9860 0.7204 14.4071% 3.5396 
15 14.7369 1.3806 9.2038% 4.0839 
25 26.0708 1.2023 4.8092% 4.9530 
35 38.3260 2.6810 7.6601% 7.4491 
45 45.6813 1.3554 3.0120% 2.9237 

 
Table 35.   Results for the OH-6A helicopter with baseline data (SL); network configuration               

14-25-25-1; Ext. DBD learning rule. 
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c. 14-25-25-1 BPNN NCD (Pruned) 
Findings for this configuration are presented in Table 36 and Figure 41. 

The pruning disabled 3 PEs in the first hidden layer. The RMS error is 0.0611 and the 

maximum speed error is 4.98 knots at 25 knots. The error SD is greater than 1.2 knots for 

the speeds 25 knots and higher. The overall error SD is 1.1689 knots. 

 

Figure 41.   Results for the OH-6A helicopter with baseline data (SL); network configuration               

14-25-25-1; NCD (Pruned) learning rule. 

 
NEURAL NETWORK RESULTS 

Total SD = 1.1689 
 

Actual  
Airspeed (kts) Mean of 

Airspeed (kts) 
Airspeed Error 
at 1 σ   (kts) 

Percent Error 
at 1 σ   

Abs. Maximum 
Error  (kts) 

5 3.9731 0.3442 6.8035% 1.7741 
15 13.4709 0.3862 2.5744% 2.3807 
25 26.1026 1.6586 6.6343% 5.0413 
35 38.1568 1.2776 3.6504% 4.9842 
45 44.9858 1.9399 4.3109% 3.1513 

 
Table 36.   Results for the OH-6A helicopter with baseline data (SL); network configuration               

14-25-25-1; NCD (Pruned) learning rule. 
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d. OH-6A SL Baseline Data IGE Analysis 
(1) 14-25-25-1 NCD IGE.   Table 37 and Figure 42 present 

detailed results for this configuration. Results show that the RMS error is 0.0593. The 

maximum speed error is 4.5 knots observed for a  35 knots speed. The largest error SD is 

2.14 knots at 45 knots. The overall error SD is 1.1501 knots.  

 

Figure 42.   Results for the OH-6A helicopter at 12 ft with baseline data (SL); network 

configuration 14-25-25-1; NCD learning rule. 

 
NEURAL NETWORK RESULTS 

 Total SD = 1.1501 
 

Actual  
Airspeed (kts) Mean of 

Airspeed (kts) 
Airspeed Error  
at 1 σ   (kts) 

Percent Error 
at 1 σ   

Abs. Maximum 
Error  (kts) 

5 3.7499 0.4647 9.2946% 2.2505 
15 13.4738 0.3264 2.1762% 2.1856 
25 26.0936 1.5397 6.1587% 4.2902 
35 37.6622 1.1159 3.1883% 4.4943 
45 44.6424 2.1425 4.7612% 2.8106 

 
Table 37.   Results for the OH-6A helicopter at 12 ft with baseline data (SL); network 

configuration 14-25-25-1; NCD learning rule. 
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(2) 14-25-25-1 NCD (Pruned) IGE.  Results are given in 

Table 38 and Figure 43. They show that the RMS error is 0.0592. The maximum speed 

error is 4.5 knots observed for a 35 knots speed. The overall error SD is 1.155 knots. We 

note that no significant improvement was obtained when compared with the un-pruned 

NCD scheme.  

 

 

Figure 43.   Results for the OH-6A helicopter at 12 ft with baseline data (SL); network 

configuration 14-25-25-1; NCD (Pruned) learning rule. 

NEURAL NETWORK RESULTS 
Total SD = 1.1549 

 
Actual  
Airspeed (kts) Mean of 

Airspeed (kts) 
Airspeed Error 
at 1 σ   (kts) 

Percent Error 
At 1 σ   

Abs. Maximum 
Error  (kts) 

5 3.8734 0.4085 8.1709% 2.0251 
15 13.5302 0.3172 2.1143% 2.0447 
25 26.1493 1.5478 6.1914% 4.1953 
35 37.7847 1.0744 3.0696% 4.5171 
45 44.7929 2.2042 4.8981% 2.8103 
 

Table 38.   Results for the OH-6A helicopter at 12 ft with baseline data (SL); network 

configuration 14-25-25-1; NCD (Pruned) learning rule. 
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(3) 14-25-25-1 Ext. DBD IGE.   Results are illustrated in 

Figure 44 and Table 39. They show that the RMS error is 0.0686. The maximum speed 

error is 7.4491 knots observed for a 35 knots speed. We note that neither the prediction of 

low speed nor the prediction of fast speed is as good as that obtained with the NCD setup. 

The overall error SD is 1.3293 knots.  

 

Figure 44.   Results for the OH-6A helicopter at 12 ft with baseline data (SL); network 

configuration 14-25-25-1; Ext. DBD learning rule. 

NEURAL NETWORK RESULTS 
Total SD = 1.3293 

 
Actual 
Airspeed (kts) Mean of 

Airspeed (kts) 
Airspeed Error 

at 1 σ   (kts) 
Percent Error 
at 1 σ   

Abs. Maximum 
Error  (kts) 

5 3.4696 0.5957 11.9134% 2.7024 
15 15.3847 1.1166 7.4493% 2.5874 
25 26.5757 1.1507 4.6029% 4.9330 
35 38.6624 2.7151 7.7574% 7.4491 
45 45.8415 1.4335 3.1855% 2.9237 
 

Table 39.   Results for the OH-6A helicopter at 12 ft with baseline data (SL); network 

configuration 14-25-25-1; Ext. DBD learning rule. 
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e. OH-6A SL Baseline Data OGE Analysis 
(1) 14-25-25-1 Ext. DBD OGE.  Results for this network are 

depicted in Figure 45 and Table 40. They show that the RMS error is 0.0687. The 

maximum speed error is 6.6 knots observed for a 35 knots speed. The error SD is over 1 

knot almost at all speeds. The overall error SD is 1.3015 knots.  

 

Figure 45.   Results for the OH-6A helicopter at 100 ft with baseline data (SL); network 

configuration 14-25-25-1; Ext. DBD learning rule. 

NEURAL NETWORK RESULTS 
Total SD = 1.3015 

 
Actual 
Airspeed (kts) Mean of 

Airspeed (kts) 
Airspeed Error  
at 1 σ   (kts) 

Percent Error 
at 1 σ   

Abs. Maximum 
Error  (kts) 

5 2.5071 0.4741 9.4826% 3.5396 
15 14.0892 1.3168 8.7787% 4.0839 
25 25.5659 1.0316 4.1264% 3.7463 
35 37.9896 2.6280 7.5087% 6.6395 
45 45.5210 1.2654 2.8119% 2.2839 

 
Table 40.   Results for the OH-6A helicopter at 100 ft with baseline data (SL); network 

configuration 14-25-25-1; Ext. DBD learning rule. 
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(2) 14-25-25-1 BPNN NCD OGE.  Figure 46 and Table 41 

present the results for this setup. Results show that the RMS error is 0.0671. The 

maximum speed error is 4.8 knots observed for a 35 knots speed. The error SD is above 1 

knot for speeds 25 knots and higher. The overall error SD is 1.2022 knots.  

 

Figure 46.   Results for the OH-6A helicopter at 100 ft with baseline data (SL); network 

configuration 14-25-25-1; NCD learning rule. 

 
NEURAL NETWORK RESULTS 

 Total SD = 1.2022 
 

Actual  
Airspeed (kts) Mean of 

Airspeed (kts) 
Airspeed Error 
at 1 σ   (kts) 

Percent Error 
at 1 σ   

Abs. Maximum 
Error  (kts) 

5 3.4898 0.3599 7.1982% 2.3155 
15 13.0474 0.4741 3.1618% 2.9471 
25 25.5998 1.7194 6.8786% 4.3737 
35 38.038 1.1861 3.3887% 4.8224 
45 45.0086 2.0195 4.4874% 2.8176 

 
Table 41.   Results for the OH-6A helicopter at 100 ft with baseline data (SL); network 

configuration 14-25-25-1; NCD learning rule. 
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(3) 14-25-25-1 BPNN NCD (Pruned) OGE.  Results are 

depicted in Figure 47 and in Table 42. Results show that the RMS error is 0.0650. The 

maximum speed error is about 5 knots at 35 knots. The maximum error is about 2 knots 

for all other speeds. One PE in the first hidden layer was disabled. The overall error SD is 

1.2 knots. Note that performance of this setup is better than that of the Ext. DBD 

configuration.   

 

Figure 47.   Results for the OH-6A helicopter at 100 ft with baseline data (SL); network 

configuration 14-25-25-1; NCD (Pruned) learning rule. 

NEURAL NETWORK RESULTS  
Total SD = 1.2096 

 
Actual  
Airspeed (kts) Mean of 

Airspeed (kts) 
Airspeed Error 
at 1 σ   (kts) 

Percent Error 
at 1 σ   

Abs. Maximum 
Error  (kts) 

5 3.8439 0.3031 6.0621% 1.8782 
15 13.3969 0.5177 3.4513% 2.5735 
25 25.9133 1.7329 6.9317% 4.5386 
35 38.2975 1.184 3.3828% 5.1005 
45 45.2226 2.0303 4.5118% 2.8686 

Table 42.   Results for the OH-6A helicopter at 100 ft with baseline data (SL); network 

configuration 14-25-25-1; NCD (Pruned) learning rule. 
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4. OH-6A Out of Ground Effect Analysis at High Altitude 

The simulator was run at a pressure altitude of 6000 feet for high altitude analysis. 

At that pressure altitude, the altitude AGL was set to 100 ft. for the OGE condition, 

which is the same AGL altitude, that the sea level OGE analysis was performed at. 

a. 14-25-25-1 BPNN NCD 
Results are presented in Figure 48 and Table 43. They show that the RMS 

error for this setup is 0.0485. The maximum speed error, which is 2.47 knots, and the 

maximum error percentage equal to 9.4 % are both observed for a 5 knots speed. The 

maximum airspeed error SD of 1.1356 knots occurs at 35 knots. The overall error SD is 

0.6637 knots.  

 

Figure 48.   Results for the OH-6A helicopter at 100 ft (HL); network configuration             

14-25-25-1; NCD learning rule. 
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NEURAL NETWORK RESULTS 
 Total SD = 0.6637 

 
Actual  
Airspeed (kts) Mean of 

Airspeed (kts) 
Airspeed Error 
at 1 σ   (kts) 

Percent Error 
at 1 σ   

Abs. Maximum 
Error  (kts) 

5 3.5101 0.4738 9.4794% 2.4762 
15 16.209 0.6861 4.5744% 2.2914 
25 23.272 0.5601 2.2405% 2.3443 
35 35.288 1.1356 3.2444% 1.8547 
45 45.985 0.6179 1.3732% 1.8831 
 

Table 43.   Results for the OH-6A helicopter at 100 ft (HL); network configuration             

14-25-25-1; NCD learning rule. 

 
b. 14-25-25-1 BPNN Ext. DBD 
Figure 49 and Table 44 present the findings for this configuration. Results 

show that the RMS error is 0.0958. This is one of the largest errors observed for the OH-

6A analysis. The maximum error is 6.36 knots, which is more than twice the error of the 

NCD setup. The error percentage at 5 knots is better than that of the NCD configuration. 

The overall error SD is 1.022 knots.  

 
NEURAL NETWORK RESULTS 

 Total SD = 1.022 
 

Actual 
Airspeed (kts) Mean of 

Airspeed (kts) 
Airspeed Error 
at 1 σ   (kts) 

Percent Error 
at 1 σ   

Abs. Maximum 
Error  (kts) 

5 3.1676 0.2838 5.6769% 2.3937 
15 19.875 0.7859 5.2395% 6.3677 
25 23.339 1.2915 5.1659% 5.3069 
35 33.995 1.9872 5.6777% 3.4085 
45 45.699 0.3127 0.6917% 1.1757 

 
Table 44.   Results for the OH-6A helicopter at 100 ft (HL); network configuration             

14-25-25-1; Ext. DBD learning rule. 
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Figure 49.   Results for the OH-6A helicopter at 100 ft (HL); network configuration             

14-25-25-1; Ext. DBD learning rule. 

c. 14-25-25-1 BPNN NCD (Pruned) 
Figure 50 and Table 45 present the findings for this configuration. The 

pruning disabled 1 PE of the first hidden layer. Results show that the RMS error is 

0.0475. The maximum speed error is 2.85 knots observed for 5 knots speed. The results 

for fast speed predictions are better than the those at low speeds. The overall error SD is 

0.6401 knots. 

NEURAL NETWORK RESULTS 
 Total SD = 0.6401 

 
Actual  
Airspeed (kts) Mean of 

Airspeed (kts) 
Airspeed Error 
at 1 σ   (kts) 

Percent Error 
at 1 σ   

Abs. Maximum 
Error  (kts) 

5 2.8147 0.3546 7.0932% 2.8415 
15 14.812 0.7660 5.1070% 1.4709 
25 24.0 0.7102 2.8410% 2.2145 
35 36.208 0.7016 2.0047% 2.0621 
45 46.040 0.6219 1.3821% 2.0527 

 
Table 45.   Results for the OH-6A helicopter at 100 ft (HL); network configuration             

14-25-25-1; NDC (Pruned) learning rule. 
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Figure 50.   Results for the OH-6A helicopter at 100 ft (HL); network configuration             

14-25-25-1; NDC (Pruned) learning rule. 

 
5. OH-6A In-Ground Effect Analysis at High Altitude 
In-ground effect analyses of the OH-6A at high altitude were implemented by 

setting the simulator pressure altitude to 6000 feet. At that pressure altitude, the altitude 

AGL was set to 12 ft. for the IGE condition, which is the same AGL altitude at which sea 

level IGE analyses were performed. 

a. 14-25-25-1 BPNN NCD 
Figure 51 and Table 46 present the findings for this configuration. Results 

show that the RMS error is 0.0516, and the maximum speed error is 2.596 knots for a 5 

knots speed. The maximum error percentage equal to 9.12 % is also observed at that 

speed. The maximum airspeed error SD of 1.20 knots occurs at 35 knots. The overall 

error SD is 0.6855 knots. 
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Figure 51.   Results for the OH-6A helicopter at 12 ft (HL); network configuration               

14-25-25-1; NDC learning rule. 

 
NEURAL NETWORK RESULTS 

 Total SD = 0.6855 
 
Actual 
Airspeed (kts) Mean of 

Airspeed (kts) 
Airspeed Error 
at 1 σ   (kts) 

Percent Error 
at 1 σ   

Abs. Maximum 
Error  (kts) 

5 3.4367 0.4811 9.1210% 2.5962 
15 16.3790 0.6755 4.503% 2.4700 
25 23.1736 0.5637 2.2547% 2.5948 
35 35.3076 1.2062 3.4462% 2.0407 
45 46.0330 0.7075 1.5722% 2.0734 
 

Table 46.   Results for the OH-6A helicopter at 12 ft (HL); network configuration               

14-25-25-1; NDC learning rule. 

 
b. 14-25-25-1 BPNN Ext. DBD 
Results for this configuration are presented in Figure 52 and Table 47. 

They show that the RMS error is 0.0865, which is larger than that of the NCD setup. 

Although the maximum error is 5.84 knots for a 15 knots speed, the maximum error 

percentage equal to 5.53 % is significantly smaller than that of the NCD scheme. The 
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maximum airspeed error SD of 1.71 knots occurs at 35 knots. Note that the airspeed 

estimation is poor at low speeds and it is best at high speeds when the gross weight of the 

helicopter is less than 2100 lb. The overall error SD is 0.9556 knots.  

 

Figure 52.   Results for the OH-6A helicopter at 12 ft (HL); network configuration               

14-25-25-1; Ext. DBD learning rule. 

 
NEURAL NETWORK RESULTS 

 Total SD = 0.9556 
 

Actual  
Airspeed (kts) Mean of 

Airspeed (kts) 
Airspeed Error 
at 1 σ   (kts) 

Percent Error 
at 1 σ   

Abs. Maximum 
Error  (kts) 

5 3.5658 0.2767 5.5336% 1.9728 
15 19.5361 0.8258 5.5054% 5.8437 
25 23.7345 1.1813 4.7250% 3.7400 
35 34.4205 1.7182 4.9093% 2.8189 
45 45.5856 0.6026 1.3391% 1.6418 

 
Table 47.   Results for the OH-6A helicopter at 12 ft (HL); network configuration               

14-25-25-1; Ext. DBD learning rule. 
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c. 14-25-25-1 BPNN NCD (Pruned) 
Results are presented in Figure 53 and Table 48. One PE in the first 

hidden layer was disabled. Results show that the RMS error is 0.0443, which is the best 

result obtained for the analysis of this altitude. The maximum speed error is 2.58 knots 

(at 5 knots) and the maximum error percentage is 5.59 %. The maximum airspeed error 

SD equal to 0.5883 knots occurs at 15 knots speed. The overall error SD is 0.6401 knots.  

 

Figure 53.   Results for the OH-6A helicopter at 12 ft (HL); network configuration               

14-25-25-1; NCD (Pruned) learning rule. 

NEURAL NETWORK RESULTS 
 Total SD = 0.443 

 
Actual  
Airspeed (kts) Mean of 

Airspeed (kts) 
Airspeed Error 
at 1 σ   (kts) 

Percent Error 
at 1 σ   

Abs. Maximum 
Error  (kts) 

5 2.9434 0.2797 5.5945% 2.5801 
15 14.7437 0.6863 4.5756% 1.4916 
25 24.2145 0.6529 2.6118% 2.0764 
35 36.3517 0.6982 1.9949% 2.1910 
45 46.8740 0.6187 1.3749% 1.8320 

 
Table 48.   Results for the OH-6A helicopter at 12 ft (HL); network configuration               

14-25-25-1; NCD (Pruned) learning rule. 



80 

6.  OH-6A Baseline Data Analysis at High Level 

A baseline training data set was formed by combining both 12 ft. and 100 ft. set of 

high level altitude data. First, the network was trained with this combined data set, and 

then the network performance was measured using the baseline testing set. Finally, the 

network performance was evaluated for IGE and OGE conditions, using single condition 

test data sets separately. Results are given below. 

a. 14-25-25-1 BPNN NCD 
Results are shown in Figure 54 and Table 49. They show that the RMS 

error is 0.0507, and the absolute maximum speed error is 3.15 knots (at 25 knots). The 

airspeed error SD at 1 σ is less than 1 knot at all speeds. The overall error SD is 0.7139 

knots.  

 

Figure 54.   Results for the OH-6A helicopter with baseline data (HL); network configuration               

14-25-25-1; NCD learning rule. 
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NEURAL NETWORK RESULTS 
 Total SD = 0.7139 

 
Actual 
Airspeed (kts) Mean of 

Airspeed (kts) 
Airspeed Error 
at 1 σ   (kts) 

Percent Error 
at 1 σ   

Abs. Maximum 
Error  (kts) 

5 3.1503 0.4366 8.7318% 2.7569 
15 15.9246 0.8179 5.4525% 2.1210 
25 23.3005 0.7533 3.0132% 3.1582 
35 35.7437 0.9455 2.7014% 2.5005 
45 45.8256 0.6244 1.3876% 2.1869 

 
Table 49.   Results for the OH-6A helicopter with baseline data (HL); network configuration               

14-25-25-1; NCD learning rule. 

 
b. 14-25-25-1 BPNN Ext. DBD 
Results are presented in Figure 55 and Table 50. They show that the RMS 

error is 0.0772, and the absolute maximum speed error is 5.39 knots, which occurs at 15 

knots speed. The maximum airspeed error SD at 1 σ is 1.61 knots (at 25 knots). The 

prediction accuracy of low speeds is not as good as that of fast speeds. The overall error 

SD is 1.0209 knots.  

 
NEURAL NETWORK RESULTS 

 Total SD = 1.0209 
 
Actual  
Airspeed (kts) Mean of 

Airspeed (kts) 
Airspeed Error 
at 1 σ   (kts) 

Percent Error 
at 1 σ   

Abs. Maximum 
Error  (kts) 

5 3.7873 0.4398 8.7951% 2.0195 
15 19.0707 0.7415 4.9436% 5.3927 
25 24.8423 1.6157 6.4628% 3.7711 
35 35.460 0.9531 2.7230% 2.0827 
45 45.6283 0.8166 1.8147% 1.8147 
 

Table 50.   Results for the OH-6A helicopter with baseline data (HL); network configuration               

14-25-25-1; Ext. DBD learning rule. 
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Figure 55.   Results for the OH-6A helicopter with baseline data (HL); network configuration               

14-25-25-1; Ext. DBD learning rule. 

c.  14-25-25-1 BPNN Ext. DBD (Pruned) 
The Ext. DBD pruned network results are presented because they were 

better than those of the NCD pruned network. The RMS error for this configuration is 

found to be 0.0549. The absolute maximum speed error is 3.43 knots (at 5 knots). The 

maximum airspeed error SD at 1 σ is less than 1 knot at all speeds. The overall error SD 

is 0.6505 knots. 

NEURAL NETWORK RESULTS 
 Total SD = 0.6505 

 
Actual 
Airspeed (kts) Mean of 

Airspeed (kts) 
Airspeed Error 
at 1 σ   (kts) 

Percent Error 
at 1 σ   

Abs. Maximum 
Error  (kts) 

5 2.3968 0.3774 7.5484% 3.4378 
15 15.6340 0.5457 3.6383% 1.4552 
25 23.7417 0.8713 3.4852% 3.3192 
35 36.3556 0.6385 1.8243% 2.4002 
45 45.9307 0.7895 1.7544% 2.1794 

 
Table 51.   Results for the OH-6A helicopter with baseline data (HL); network configuration               

14-25-25-1; Ext. DBD (Pruned) learning rule. 
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Figure 56.   Results for the OH-6A helicopter with baseline data (HL); network configuration               

14-25-25-1; Ext. DBD (Pruned) learning rule. 

 
7. OH-6A HL Baseline Data IGE Analysis 

a. 14-25-25-1 NCD IGE 
The findings for this configuration are presented in Table 57 and Figure 

57. Results show that the RMS error is 0.0446 and the absolute maximum speed error 

is2.49 knots (at5 knots). The airspeed error SD at 1 σ is less than 1 knot at all speeds. The 

overall error SD is 0.6296 knots.  

NEURAL NETWORK RESULTS 
 Total SD = 0.6296 

 
Actual  
Airspeed (kts) Mean of 

Airspeed (kts) 
Airspeed Error 
at 1 σ   (kts) 

Percent Error 
at 1 σ   

Abs. Maximum 
Error  (kts) 

5 3.2718 0.4172 8.8436% 2.4936 
15 15.7052 0.7943 5.2950% 1.9305 
25 23.5417 0.5634 2.2538% 2.2911 
35 35.6807 0.7965 2.2758% 1.8238 
45 45.5805 0.5918 1.3150% 1.4307 

 
Table 52.   Results for the OH-6A helicopter at 12 ft with baseline data (HL); network 

configuration 14-25-25-1; NCD learning rule. 
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Figure 57.   Results for the OH-6A helicopter at 12 ft with baseline data (HL); network 

configuration 14-25-25-1; NCD learning rule. 

b. 14-25-25-1 Ext. DBD IGE 
Table 53 and Figure 58 present the findings for this configuration. Results 

show that the RMS error is 0.0682, and the absolute maximum speed error is 4.55 knots, 

which occurs at 5 knots speed. The maximum airspeed error SD at 1 σ is 1.47 knots (at 

25 knots). The overall error SD is 0.9027 knots.  

 
NEURAL NETWORK RESULTS 

 Total SD = 0.9027 
 

Actual 
Airspeed (kts) Mean of 

Airspeed (kts) 
Airspeed Error 
at 1 σ   (kts) 

Percent Error 
at 1 σ   

Abs. Maximum 
Error  (kts) 

5 3.8334 0.4224 8.4479% 1.8070 
15 18.5289 0.4925 3.2834% 4.5586 
25 24.4931 1.7556 5.9025% 3.3707 
35 35.5342 0.8230 2.3513% 1.7742 
45 45.4751 0.7995 1.7767% 1.8916 

 
Table 53.   Results for the OH-6A helicopter at 12 ft with baseline data (HL); network 

configuration 14-25-25-1; Ext. DBD learning rule. 
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Figure 58.   Results for the OH-6A helicopter at 12 ft with baseline data (HL); network 

configuration 14-25-25-1; Ext. DBD learning rule 

c. 14-25-25-1 NCD (Pruned) IGE 
Figure 59 and Table 54 present the findings for this configuration. Results 

show that the RMS error is 0.0732. The absolute maximum speed error equal to 2.09 

knots occurs at 25 knots speed. The maximum airspeed error SD at 1 σ is less than 1 knot 

at all speeds. The overall error SD is 0.6655 knots. 

 
NEURAL NETWORK RESULTS 

 Total SD = 0.6655 
 

Actual  
Airspeed (kts) Mean of 

Airspeed (kts) 
Airspeed Error 
at 1 σ   (kts) 

Percent Error 
at 1 σ   

Abs. Maximum 
Error  (kts) 

5 3.6158 0.3581 7.1625% 2.0768 
15 15.4433 0.8653 5.7688% 1.9782 
25 24.1375 0.6593 2.6372% 2.0969 
35 35.1451 0.6882 1.9693% 1.3938 
45 44.5488 0.6975 1.5501% 1.4001 

 
Table 54.   Results for the OH-6A helicopter at 12 ft with baseline data (HL); network 

configuration 14-25-25-1; NCD learning rule. 
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Figure 59.   Results for the OH-6A helicopter at 12 ft with baseline data (HL); network 

configuration 14-25-25-1; NCD (Pruned) learning rule 

8. OH-6A HL Baseline Data OGE Analysis 

a. 14-25-25-1 NCD OGE 
Results for this setup are shown in Figure 60 and Table 55. They show 

that the RMS error is 0.0561. The absolute maximum error equal to 3.15 knots occurs at 

25 knots. The maximum airspeed error SD at 1 σ is 1.07 knots, which is observed for 35 

knots speed. The overall error SD is 0.7393 knots.  

NEURAL NETWORK RESULTS 
 Total SD = 0.7393 

 
Actual 
Airspeed (kts) Mean of 

Airspeed (kts) 
Airspeed Error 
at 1 σ   (kts) 

Percent Error 
at 1 σ   

Abs. Maximum 
Error  (kts) 

5 3.0288 0.4230 8.4591% 2.7569 
15 16.1439 0.7843 5.2287% 2.1210 
25 23.0594 0.8394 3.3576% 3.1582 
35 35.8068 1.0779 3.0798% 2.5005 
45 46.0707 0.5608 1.2461% 2.1869 

 
Table 55.   Results for the OH-6A helicopter at 100 ft with baseline data (HL); network 

configuration 14-25-25-1; NCD learning rule. 
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Figure 60.   Results for the OH-6A helicopter at 100 ft with baseline data (HL); network 

configuration 14-25-25-1; NCD learning rule. 

b. 14-25-25-1 Ext. DBD OGE 
Results are shown in Figure 61 and Table 56. They show that the RMS 

error is 0.0853 and the absolute maximum speed error is 5.39 knots (at 15 knots). The 

maximum airspeed error SD at 1 σ equal to 1.67 knots is observed for 25 knots speed. 

The overall error SD is 1.0233 knots.  

 
NEURAL NETWORK RESULTS 

 Total SD = 1.0233 
 
Actual  
Airspeed (kts) Mean of 

Airspeed (kts) 
Airspeed Error 
at 1 σ   (kts) 

Percent Error 
at 1 σ   

Abs. Maximum 
Error  (kts) 

5 3.7411 0.4534 9.0672% 2.0195 
15 19.6126 0.5194 3.4625% 5.3927 
25 25.1916 1.6786 6.7143% 3.7711 
35 35.3858 1.070 3.0573% 2.0827 
45 45.7815 0.8118 1.8040% 1.9277 
 

Table 56.   Results for the OH-6A helicopter at 100 ft with baseline data (HL); network 

configuration 14-25-25-1; Ext. DBD learning rule. 
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Figure 61.   Results for the OH-6A helicopter at 100 ft with baseline data (HL); network 

configuration 14-25-25-1; Ext. DBD learning rule. 

c. 14-25-25-1 Ext. DBD (Pruned) OGE 
 Figure 62 and Table 57 present the findings for this configuration. Results 

show that the RMS error is 0.0565, which is slightly greater than that of the NCD setup. 

The absolute maximum speed error equal to 4.71 knots occurs at 35 knots speed. The 

maximum airspeed error SD at 1 σ is 1.25 knots (at 35 knots). The overall error SD is 

0.8344 knots.  

 
NEURAL NETWORK RESULTS 

 Total SD = 0.8344 
 

Actual  
Airspeed (kts) Mean of 

Airspeed (kts) 
Airspeed Error 
at 1 σ   (kts) 

Percent Error 
at 1 σ   

Abs. Maximum 
Error  (kts) 

5 2.9652 0.3962 7.9235% 2.7769 
15 16.1362 0.6021 4.0141% 2.1404 
25 24.9846 1.1310 4.5241% 2.8046 
35 37.5287 1.2565 3.5785% 4.7113 
45 46.6852 0.7609 1.6906% 3.0221 

Table 57.   Results for the OH-6A helicopter at 100 ft with baseline data (HL); network 

configuration 14-25-25-1; Ext. DBD (Pruned) learning rule. 
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Figure 62.   Results for the OH-6A helicopter at 100 ft with baseline data (HL); network 

configuration 14-25-25-1; Ext. DBD (Pruned) learning rule. 

C. NETWORK PERFORMANCES SUMMARY 
Results for all experiments are summarized in Table 58 to Table 60. Analysis 

results for the UH-60A helicopter and OH-6A helicopter at sea level and high level 

analyses results are shown separately in Tables 58, 59 and 60 in terms of airspeed error 

SD, absolute maximum error, RMS error and maximum percent error of each NN 

architecture. 

Table 58 displays results obtained for the UH-60A helicopter model. For the UH-

60A helicopter at 85 ft (out of ground effect condition) a 2-layer BPNN network with the 

NCD learning rule with pruning yielded the best results. This configuration shows a 

predicted airspeed with 0.7 knots error SD, while the maximum error is 3.34 knots, the 

maximum error percentage error is 4.22 % and the RMS error is 0.0355. When the 

helicopter is at 20 ft. (in ground effect condition), the network with NCD rule produced 

an estimate with 0.84 knots error SD, a RMS error equal to 0.0374, a 3 knots maximum 

error and a maximum error percentage within 5.2 %. These results are significantly better 

than those obtained by Haas and McCool, with real flight data. Their study showed that 
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using real flight data as input to the NN, UH-60A airspeed can be predicted with an 

accuracy of  ± 5 knots when the aircraft is in ground effect. However they performed that 

analysis with a reference airspeed uncertainty of  ± 2 knots. Note that prediction accuracy 

improved considerably with the simulator data, which has no wind effect nor any other 

uncertainties.  
UH-60A Helicopter  
BPNN Models 

RMS 
Error 

Error of 
SD at 1 σ 

Abs. Max. Error 
(knots) 

Max. Percent 
Error (%) 

OGE NCD 0.0658 0.7506 3.85  
(at 35 knots) 

6.4 
(at 5 knots) 

OGE Ext. DBD 0.0593 0.7017 3.86 
(at 45 knots) 

8.49 
(at 5 knots) 

OGE NCD Prune 0.0355 0.7167 3.34 
(at 35 knots) 

4.22 
(at 5 knots) 

Simplified Data OGE NCD 0.0656 1.0032 3.89 
(at 35 knots) 

5.5 
(at 5 knots) 

Simplified Data OGE Ext. DBD 0.0565 1.1692 5.4 
(at 45 knots) 

11.75 
(at 5 knots) 

Simplified Data NCD Prune 0.0648 1.1942 5.4 
(at 25 knots) 

7.95 
(at 5 knots 

One Layer NCD 0.0407 0.8394 3.37 
 (at 35 knots) 

4.5 
 (at 15 knots) 

One Layer Ext. DBD 0.0657 0.7002 3.79 
 (at 35 knots) 

8.34  
(at 5 knots) 

IGE NCD 0.0374 0.8469 3.0 
(at 35 knots) 

5.2 
(at 35 knots) 

IGE Ext. DBD 0.0637 0.8308 4.8 
(at 45 knots) 

6.0 
(at 5 knots) 

IGE NCD Prune 0.0724 0.8864 4.86 
(15 knots) 

5.22  
(at 25 knots) 

Baseline Data NCD 0.0762 1.5664 6.24 
(at 45 knots) 

8.0 
 (at 5 knots) 

Baseline Data Ext. DBD 0.0501 0.7320 4.5  
(at 35 knots) 

10.7 
 (at 5 knots) 

Baseline Data NCD Prune 0.1213 2.0830 8.64 
(at 45 knots) 

11.5 
(at 25 knots) 

Baseline Data IGE NCD 0.0759 1.5516 6.24  
(at 35 knots) 

10.12 
(at 5 knots) 

Baseline Data IGE Ext. DBD 0.0499 0.6505 4.5 
(at 35 knots) 

8.7 
(at 5 knots) 

Baseline Data IGE NCD Prune 0.0901 1.7173 7.91 
(at 45 knots) 

9.12 
(at 25 knots) 

Baseline Data OGE NCD 0.0766 1.5516 5.86 
(at 25 knots) 

9.3 
(at 25 knots) 

Baseline Data OGE Ext. DBD 0.0482 0.6850 3.8 
(at 35 knots) 

9.5 
(at 5 knots) 

Baseline Data OGE NCD Prune 0.1087 1.8642 7.14 
(at 35 knots) 

9.42 
(at 25 knots) 

 
Table 58.   Overall Results for the UH-60A Helicopter. 
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Results showed that the network with the Ext. DBD rule produced the best results 

for the baseline data analysis. This network predicted airspeed with a 0.73 knots error SD 

and a 0.05 RMS error. The maximum error was estimated at 4.5 knots at 35 knots speed, 

while the maximum error percentage was 10.7 % observed for a 5 knots speed. Using the 

baseline data for the IGE condition airspeed prediction was good with the Ext. DBD 

network since it produced an error SD of 0.65 knots, a RMS error of 0.05, maximum 

error of 4.5 knots at the speed of 35 knots and a maximum percent error of 8.7%. The 

baseline data OGE condition results were very close to those of the baseline data IGE 

condition results. Using this data, the network with Ext. DBD rule predicted the airspeed 

with a 0.048 RMS error, a 0.68 knots error SD, a 3.8 knots maximum error at the speed 

of 35 knots and a 9.5% maximum percent error. The single condition data prediction was 

slightly better than that observed with the baseline data. 

We note that the maximum error and maximum error SD occurred mostly at 35 

knots speed for all networks. A potential explanation might be that the hover to forward 

flight translational lift was set to 30 knots for all the FLIGHTLAB simulator models. The 

network was trained with the test data set and tested with the training data set in order to 

explore this idea. Results obtained with the switched data showed that the maximum error 

and maximum error SD occurs when the helicopter is moving at 30 knots. While not 

conclusive, this set indicates the difficulty is associated with the simulated helicopter 

performance near these speeds. 

OH-6A analyses were conducted at sea level and at high altitude (at 6000 feet 

pressure altitude) using a similar methodology for the UH-60A model. Table 59 shows 

the results of the OH-6A analyses at sea level, and Table 60 shows the results for high 

altitude analyses. 

At sea level, the OGE condition using the single condition data NCD network 

with the pruning function predicted an airspeed with a 0.76 knots error SD and a 0.067 

RMS error. The maximum error was about 4.69 knots for a 35 knots speed while the 

maximum error was observed at 9.9 %. At sea level, the IGE condition NCD network 

produced a 0.84 knots error SD. The RMS error was about 0.059, the maximum error was 

5.1 knots, and the maximum percent error was 9.7%. Results showed that using baseline 
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data reduced the network performance, as the error SD was 1.169 knots, the RMS error 

was 0.0611, the maximum error was 5 knots and the maximum percent error was 6.8 %. 

The NCD network with the pruning function yielded the best results for this condition.  

For baseline data, the IGE condition NCD pruned network predicted the airspeed 

with a 1.15 knots error SD, while the RMS error was about 0.059 and the maximum error 

was 4.5 for a 35 knots speed. The maximum error percentage was found to be 8.19% for 

this condition. For the baseline data OGE condition, airspeed was estimated with a 1.20 

knots error SD and a 0.065 RMS error with the pruned NCD network. A 5.1 knots 

maximum error occurred for a 35 knots speed and the maximum error percentage was 

6.9%. 

OH-6A Helicopter  

BPNN models (at sea level) 

RMS  

Error 

Error of  

SD at 1σ 

Abs. Max.  

Error (knots) 

Max. Percent 
Error (%) 

OGE NCD 0.06 0.79 5.2(at 35 knots) 9.5 (at 5knots) 

OGE Ext. DBD 0.0735 1.32 5 (at 35 knots) 9.4 (at 5knots) 

OGE NCD Prune 0.067 0.759 4.69(at 35 knots) 9.9 (at 5knots) 

IGE NCD 0.059 0.8465 5.1(at 35 knots) 9.7 (at 5knots) 

IGE Ext. DBD 0.062 0.9678 5.9(at 35 knots) 12.2 (at 5knots) 

IGE NCD Prune 0.0674 0.88 4.41(at 35 knots) 12.1(at 5knots) 

Baseline Data NCD 0.062 1.192 4.82(at 35 knots) 8.69(at 5knots) 

Baseline Data Ext. DBD 0.0687 1.407 7.44(at 35 knots) 14(at 5knots) 

Baseline Data NCD prune 0.0611 1.16 5(at 35 knots) 6.8(at 5knots) 

Baseline Data IGE NCD 0.0593 1.15 4.49(at 35 knots) 9.29(at 5knots) 

Baseline Data IGE Ext. DBD 0.0686 1.32 7.44(at 35 knots) 11.9(at 5knots) 

Baseline Data IGE NCD Prune 0.0592 1.15 4.51(at 35 knots) 8.19(at 5knots) 

Baseline Data OGE NCD 0.0671 1.20 4.82(at 35 knots) 7.2(at 5knots) 

Baseline Data OGE Ext. DBD 0.0687 1.3 6.6(at 35 knots) 9.4(at 5knots) 

Baseline Data OGE NCD Prune 0.0650 1.2 5.1(at 35 knots) 6.9(at 5knots) 
 

Table 59.   Overall Results for OH-6A Helicopter at Sea Level. 

 The pruned NCD network predicted the airspeed with a 0.64 knots error SD for 

the OH-6A high level OGE condition. The RMS error was found to be equal to 0.0475, 

while the maximum error was 2.8 knots at 5 knots speed and the maximum error was 

about 7%. Finally, the airspeed was predicted with a 0.64 knots error SD, a 0.0433 RMS 



93 

error, a 2.58 knots maximum error and a 5.6% maximum error percentage for the IGE 

condition using the single condition data with the pruned NCD network.  

The following results were obtained for the baseline data. The Ext. DBD network 

performed best with a 0.65 knots error SD, a 0.055 RMS error, a 3.4 knots maximum 

error for a 5 knots speed and a 7.5 % maximum error percentage. The NCD pruned 

network yielded the best results for the baseline data IGE condition. For this setup, the 

RMS error was 0.0352 while the error SD was 0.66 and the maximum error was 2 knots 

at the speed of 25 knots. The maximum percent error was 7.1% for this condition. The 

baseline data OGE condition results were close to the IGE condition results. The NCD 

network estimated the airspeed with an error SD of 0.74 knots, a RMS error of 0.056, a 

maximum error of 3.15 knots and a maximum percent error of 8.4%. 

OH-6A Helicopter  

BPNN models (at high altitude) 

RMS  

Error 

Error of  

SD at 1σ 

Abs. Max.  

Error (knots) 

Max. Percent 
Error (%) 

OGE NCD 0.0485 0.6637 2.47 (at 5knots) 9.47(at 5knots) 

OGE Ext. DBD 0.0958 1.022 6.36(at 15knots) 5.67(at 5knots) 

OGE NCD Prune 0.0475 0.64 2.85(at 5knots) 7.1(at 5knots) 

IGE NCD 0.0516 1.20 2.59(at 5knots) 9.12(at 5knots) 

IGE Ext. DBD 0.0865 0.95 5.8(at 15knots) 5.53(at 5knots) 

IGE NCD Prune 0.0443 0.64 2.58(at 5knots) 5.59(at 5knots) 

Baseline Data NCD 0.05 0.71 3.15(at 25knots) 8.73(at 5knots) 

Baseline Data Ext. DBD 0.077 1.02 5.4(at 15knots) 8.8(at 5knots) 

Baseline Data Ext. DBD prune 0.055 0.65 3.43(at 5knots) 7.5(at 5knots) 

Baseline Data IGE NCD 0.0446 0.63 2.49(at 5knots) 8.84(at 5knots) 

Baseline Data IGE Ext. DBD 0.0687 0.9 4.55(at 5knots) 8.44(at 5knots) 

Baseline Data IGE NCD Prune 0.0352 0.66 2.09(at 25knots) 7.1(at 5knots) 

Baseline Data OGE NCD 0.056 0.74 3.15(at 25knots) 8.45(at 5knots) 

Baseline Data OGE Ext. DBD 0.0853 1.02 5.39(at 15knots) 9(at 5knots) 

Baseline Data OGE Ext. DBD Prune 0.0565 0.83 4.71(at 35knots) 7.9(at 5knots) 
 
Table 60.   Overall Results of OH-6A Helicopter at High Altitude. 

In summary, these results show that the NN approach to predict airspeed using 

simulation data is quite promising. The BPNN with two hidden layers and 25 PEs in each 

layer performs the best among all studied architectures. We note that different learning 
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rules yielded different results and that enabling the pruning facility improved the network 

performance in most cases. 
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V. CONCLUSIONS AND RECOMMENDATIONS 

A. SUMMARY 
Today, military helicopters perform a wide variety of tasks in conditions ranging 

from hot and dry to cold and wet, windy and low visibility weather. Accurate low speed 

velocity sensing devices are essential because aircraft velocity and position information 

are what pilots need to perform safely in these regimes. However, conventional speed 

measuring systems do not work accurately when the aircraft speed is below 40 knots. 

NN-based airspeed prediction studies developed by McCool, Haas and others 

showed that NN is a good approach to solve this problem. The objective of this thesis is 

to build a NN model in order to predict OH-6A helicopter airspeed in the low speed 

environment using a flight simulator to obtain the parameters required for the NN. In our 

study the NN model is developed with Neural Works Professional Plus/II software. 

First a NN model of the UH-60A helicopter was built and implemented, and 

several NN configurations analyzed. The reason for building a NN model for the UH-

60A helicopter was to lay out a background to make a comparison of NN predictions 

using simulator data and NN predictions using real flight data. The results showed using 

simulator data potentially improves the accuracy of prediction significantly.  

Three different methods were investigated to select the NN training data. The first 

one is a single condition data set in which the data belongs to one altitude only. The 

second one is called the baseline data set, and is formed by combining the data of two 

single condition data sets of different altitudes. The third set is obtained by applying 

principal component analyses to decrease the input space dimension and it is called a 

simplified data set. Results showed that the network trained by using a single condition 

data set proved to be the most successful and performance degraded only slightly with the 

baseline data. Moreover, the BPNN network produced more successful predictions than 

the RBFN implementation.  

Among all BPNN architecture types considered, a two-hidden layer BPNN with 

an enabled pruning facility for the NCD learning rule showed the best performance. At 

sea level pressure altitude, the UH-60A low airspeed was predicted with one-sigma 
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accuracy of ± 0.71 knots when the aircraft was out of ground effect. The accuracy of 

prediction was ± 0.88 knots when the aircraft was in ground effect.  

The OH-6A low speed was predicted using a similar methodology based on the 

results obtained from the UH-60A model. The OH-6A analysis was performed at high 

pressure altitude as well as at seal level altitude. Results showed that at sea level, the OH-

6A airspeed could be predicted with one-sigma accuracy of ± 0.75 knots when the 

aircraft is out of ground effect. The best performance for all high altitude analyses 

obtained from the pruned NCD network was with single condition data. For IGE 

conditions, the prediction accuracy was about ± 0.88 knots. High altitude analysis was 

performed at 6000 feet. The results showed that at high altitude, the OH-6A airspeed 

could be predicted with an accuracy of ± 0.64 knots when the aircraft is out of ground 

effect. For IGE conditions, the prediction accuracy was about ± 0.64 knots.  

This study showed that a NN based approach to determine OH-6A helicopter 

airspeeds using a flight simulator is quite promising. The approach considered presents a 

mechanically simple alternative to current low airspeed measurement systems, and as a 

result contributes to increase the flight safety and combat effectiveness.  

B. RECOMMENDATIONS FOR FURTHER RESEARCH 

Several avenues are available to extend the work presented in this study. First, 

results obtained using real flight data are needed.  These results should be compared to 

the results obtained here to evaluate the performance of our approach. Second, more 

sophisticated maneuvers need to be simulated and analyzed. The NN model might be 

further improved by using different network models, model parameters, etc. Another type 

of network to be investigated may be NN-based sideslip angle estimator, which would 

provide accurate wind direction for pilot-aid systems. Finally, the effects of measurement 

noise, sensor errors, and sensor failure should be investigated. 
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APPENDIX A.  NEURALWORKS PROFESSIONAL PLUS/II 

PROGRAM SETUP 

Neural Works Professional II/PLUS is a powerful and flexible development tool. 

It has over 20 different algorithms including common network types such as Back 

Propagation, Kohonen and Radical Basis Functions. The product includes a variety of 

diagnostic tools as well as options for quick and easy building networks.  

Before creating the network, data files must be put under the directory of 

Neuralware Professional directory. The test and training input data files must be given 

different names but both of them must have extension of “.nna”. The data files used in 

this thesis may be obtained from Professor R. W. Duren, Naval Post Graduate School 

Department of Aerospace and Aeronautical Engineering, by request. 

Neural network development process begins with collecting and preprocessing 

input data. In this study data is collected from FLIGHTLAB simulation and prepared by 

using MATLAB. Preparation involves encoding data to a format that NN can deal with. 

For this problem data set was converted to a matrix with a dimension of 1114x14, where 

columns represent the inputs and rows represent the samples of each inputs. MATLAB is 

also used to separate the data into to sets, training set and test set, as well as to display the 

results. MATLAB codes for preprocessing and post processing the data are included in 

Appendix B. 

After starting NeuralWorks program, Back-propagation command, under the 

InstaNet menu, must be selected to create a BP network.  Selecting this command opens 

up BP dialog box, which allows user to build the main frame of the network by entering 

number of layers and number of PEs per layer. In addition to these, learning coefficient 

of each layer, momentum term, learning rule, transfer function, test data and training data 

of the network can be selected. Also by selecting “minmax” radio button, inputs can be 

mapped from the data file to a desired range, such as –1 to 1. 

Activating this box opens up another window, which asks user how to display the 

performance of the network, such as RMS error, classification rate, etc. After these 

selections network is created which is presented in a window like in Figure 5. Created 
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network can be saved either in binary format or in ASCII format by selecting the Save 

command under the File menu.  

Selecting the Learn command under the Run menu starts training. At this point, 

number of learning iterations can be entered by the user. As each training example is 

presented to the network, the network produces an output, which is used to evaluate the 

training performance of the network. Another way to train the network is to use Savebest 

command under the Run menu. This commands opens up Run/Check dialog box, which 

makes pruning facility accessible. Based on a decision criteria specified by the user, 

pruning facility disables connections in a network as the network is training.  

Network is tested using the test data sets and by selecting the Test command 

under the Run menu. The desired outputs, along with the actual network results are 

written to the results file which has “.nnr” extension. 

Based on the above explanations and after preparing the data, OH-6A helicopter 

14-25-25-1 BPNN NCD (Prune) network model created using the following steps: 

Start Neural Works on the computer 

Select Back-Propagation command from the InstaNet menu. This command pops 

up the following window. 

 
Figure 63.   Back-propagation network setup window  
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1. Select “trainfile_trn” from the training input scroll window. 

2. Select “testfile_tst” from the testing input scroll window. 

3. In the number of PEs section, enter the following numbers: 

               -Input: 14 

               -Hid1: 25 

               -Hid2: 25 

               -Output: 1 

4. Enter 0.4 for momentum and 0.5 for LCoef ratio. 

5. Select Norm-Cum-Delta for the learning rule. 

6. Select TanH for the transfer function. 

7. Check MinMax table box. 

8. Click the OK button. 

9.  After clicking OK the following window opens automatically. Select RMS 

Error. 

 
Figure 64.    Instrument /Create menu 

10. Click OK. 

11. Start training by selecting the SaveBest command under the Run menu. 

SaveBest command setup is shown in Figure #. Training can also be started by 

selecting Learn command under the same menu. SaveBest command allows 

user to use Pruning facility. 

12. Type the name of the file that results are to be written. 

13. Enter 50000 in the For field. 

14. Enter 1000 for the Test Interval. 
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15. Check the pruning radio button. 

16. Enter 0.975 for the Tolerance field. 

17. Select Classification Rate for the Objective Function list. 

18. Click OK. to start training. 

 
Figure 65.   SaveBest command window 

19. After training is completed select Test in the Run menu. 

 
Figure 66.   Test command window 

20. Select One Pass/All. 

21. Click OK. 

After test process has been completed the performance of the network is displayed 

on the main window in terms of selected options, such as RMS error, network weights, 

etc. and the results are stored in the test file with .nnr extension. In this work, the result 

files were saved as text files in order to be exported into the MATLAB.  
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APPENDIX B. MATLAB® M-FILES 

MATLAB m-files were developed to prepare the simulation outputs for NN and 

to process the NN results.  

 
a. FILE Name: Gregcode 

The first code included in this appendix is the FLIGHLAB scope language, an 

interpretive language that uses the industry standard MATLAB syntax. This routine 

loads the specified model and runs the simulator. The outputs of this routine are used as 

inputs to the NN model. 

 
/*********************************************************************** 

This code was developed by LT. Gregory OUELLETTE, USN. for the Naval 
Postgraduate School in partial fulfillment of the requirements for a Masters Degree in 
Aeronautical Engineering. 

September 2001. 
/*********************************************************************** 

 
exec("$FL_DIR/flme/models/articulated/arti-rgd-3iv-qs-simeng.def",1) 
world_model_airframe_cpg_testcond_poszic = -85; 
exec("xatestcond.exc",1) 
exec("xamodeltrim.exc",1) 
 
goto world 
group test 
 
gw = [16000:1000:24000]'; 
hdg = [30:30:360]'; 
vel = [0:5:30]'; 
column = 0; 
 
utrim = @trimvariable; 
statesave = savestates(world_topsolve); 
 
for ngw = 1:prod(size(gw)) 
  for nhdg = 1: prod(size(hdg)) 
    for nvel = 1: prod(size(vel)) 
     
world_model_airframe_cpg_testcond_poszic = -85; 
world_model_airframe_cpg_testcond_veq = vel(nvel); 
world_model_airframe_cpg_testcond_gamh = hdg(nhdg); 
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world_model_data_vweight = gw(ngw); 
 
exec("xatestcond.exc",1) 
exec("xamodeltrim.exc",1) 
 
outputs(column+nvel,1) = world_model_control_data_xatrm; 
outputs(column+nvel,2) = world_model_control_data_xbtrm; 
outputs(column+nvel,3) = world_model_control_data_xctrm; 
outputs(column+nvel,4) = world_model_control_data_xptrm; 
outputs(column+nvel,5) = world_model_airframe_cpg_xaout_p; 
outputs(column+nvel,6) = world_model_airframe_cpg_xaout_q; 
outputs(column+nvel,7) = world_model_airframe_cpg_xaout_r; 
outputs(column+nvel,8) = world_model_airframe_cpg_xaout_phi; 
outputs(column+nvel,9) = world_model_airframe_cpg_xaout_psi; 
outputs(column+nvel,10) = world_model_airframe_cpg_xaout_radralt; 
outputs(column+nvel,11) = world_model_airframe_cpg_xaout_vclimb; 
outputs(column+nvel,12) = world_model_rotor1_rotor_cpg_xaout_omega; 
outputs(column+nvel,13) = world_model_propulsion_cpg_xaout_etorq; 
outputs(column+nvel,14) = world_model_data_vweight; 
outputs(column+nvel,15) = world_model_airframe_cpg_xaout_tas; 
outputs(column+nvel,16) = world_model_airframe_cpg_testcond_gamh; 
outputs(column+nvel,17) = world_model_airframe_cpg_testcond_veq; 
outputs(column+nvel,18) = 0; 
 
end 
 
column = column + prod(size(vel)); 
savestates(world_topsolve,statesave); 
@trimvariable = utrim; 
 
end 
end 
 
trainset = outputs'; 
save("velhead.sav",trainset) 
 
 
exec("$FL_DIR/flme/models/articulated/arti-rgd-3iv-qs-simeng.def",1) 
world_model_airframe_cpg_testcond_poszic = -85; 
exec("xatestcond.exc",1) 
exec("xamodeltrim.exc",1) 
 
goto world 
group test 
 
 



105

gw = [16000:1000:24000]'; 
hdg = [-60:30:60]'; 
vel = [35:5:40]'; 
column = 0; 
 
utrim = @trimvariable; 
statesave = savestates(world_topsolve); 
 
for ngw = 1:prod(size(gw)) 
  for nhdg = 1: prod(size(hdg)) 
    for nvel = 1: prod(size(vel)) 
     
world_model_airframe_cpg_testcond_poszic = -85; 
world_model_airframe_cpg_testcond_veq = vel(nvel); 
world_model_airframe_cpg_testcond_gamh = hdg(nhdg); 
world_model_data_vweight = gw(ngw); 
 
exec("xatestcond.exc",1) 
exec("xamodeltrim.exc",1) 
 
outputs(column+nvel,1) = world_model_control_data_xatrm; 
outputs(column+nvel,2) = world_model_control_data_xbtrm; 
outputs(column+nvel,3) = world_model_control_data_xctrm; 
outputs(column+nvel,4) = world_model_control_data_xptrm; 
outputs(column+nvel,5) = world_model_airframe_cpg_xaout_p; 
outputs(column+nvel,6) = world_model_airframe_cpg_xaout_q; 
outputs(column+nvel,7) = world_model_airframe_cpg_xaout_r; 
outputs(column+nvel,8) = world_model_airframe_cpg_xaout_phi; 
outputs(column+nvel,9) = world_model_airframe_cpg_xaout_psi; 
outputs(column+nvel,10) = world_model_airframe_cpg_xaout_radralt; 
outputs(column+nvel,11) = world_model_airframe_cpg_xaout_vclimb; 
outputs(column+nvel,12) = world_model_rotor1_rotor_cpg_xaout_omega; 
outputs(column+nvel,13) = world_model_propulsion_cpg_xaout_etorq; 
outputs(column+nvel,14) = world_model_data_vweight; 
outputs(column+nvel,15) = world_model_airframe_cpg_xaout_tas; 
outputs(column+nvel,16) = world_model_airframe_cpg_testcond_gamh; 
outputs(column+nvel,17) = world_model_airframe_cpg_testcond_veq; 
outputs(column+nvel,18) = 0; 
end 
 
column = column + prod(size(vel)); 
savestates(world_topsolve,statesave); 
@trimvariable = utrim; 
 
end 
end 
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trainset = outputs'; 
save("velheadfast.sav",trainset) 
 
 
b.  FILE Name: Ozcan.m 

%********************************************************************* 
%  This routine takes simulation output files as input and makes them applicable for NN 

%  model by forming a matrix, where columns represent the input parameters to NN and  

%  rows represent the samples.  

%  mat1 is the output matrix of the routine where all the data are stored and to be used as  

%  input data to the NN. 

%  The last part of the routine may be used to obtain the simplified data using 

%  eigenvalues and  eigenvectors. Dataeig is the resultant matrix for simplified data. 

%  September 2001 

%********************************************************************* 
 
clear all; 
format short e 
load velhead.txt;                        % loading ascii file (simulation output file) 
load velheadfast.txt;                  %loading ascii file  
 
m=1; 
 
for i = 1:length(velhead)/6 
 
slat_stick(i)  =   velhead(m,1); 
slong_stick(i) =   velhead(m,2); 
scoll_pos(i)   =   velhead(m,3); 
sped_pos(i)    =   velhead(m+1,1); 
sroll_rate(i)  =   velhead(m+1,2); 
spitch_rate(i) =   velhead(m+1,3); 
syaw_rate(i)   =   velhead(m+2,1); 
spitch_att(i)  =   velhead(m+2,2); 
sroll_att(i)   =   velhead(m+2,3); 
salt(i)        =   velhead(m+3,1); 
sclimb_rate(i) =   velhead(m+3,2); 
smrb_rpm(i)    =   velhead(m+3,3); 
seng_torque(i) =   velhead(m+4,1); 
sgw(i)         =   velhead(m+4,2); 
stas_trim(i)   =   velhead(m+4,3)*(360/608);      % ft/sec is converted into knots 
sheading(i)    =   velhead(m+5,1); 
stas_trgt(i)   =   velhead(m+5,2); 
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szero(i)       =   velhead(m+5,3); 
m=m+6; 
end    
m=1; 
for i = 1:length(velheadfast)/6 
 
flat_stick(i)  =   velheadfast(m,1); 
flong_stick(i) =   velheadfast(m,2); 
fcoll_pos(i)   =   velheadfast(m,3); 
fped_pos(i)    =   velheadfast(m+1,1); 
froll_rate(i)  =   velheadfast(m+1,2); 
fpitch_rate(i) =   velheadfast(m+1,3); 
fyaw_rate(i)   =   velheadfast(m+2,1); 
fpitch_att(i)  =   velheadfast(m+2,2); 
froll_att(i)   =   velheadfast(m+2,3); 
falt(i)        =   velheadfast(m+3,1); 
fclimb_rate(i) =   velheadfast(m+3,2); 
fmrb_rpm(i)    =   velheadfast(m+3,3); 
feng_torque(i) =   velheadfast(m+4,1); 
fgw(i)         =   velheadfast(m+4,2); 
ftas_trim(i)   =   velheadfast(m+4,3)*(360/608);     % ft/sec is converted into knots 
fheading(i)    =   velheadfast(m+5,1); 
ftas_trgt(i)   =   velheadfast(m+5,2); 
fzero(i)       =   velheadfast(m+5,3); 
m=m+6; 
end   
lat_stick=[slat_stick,flat_stick]; 
long_stick=[slong_stick,flong_stick]; 
coll_pos=[scoll_pos,fcoll_pos]; 
ped_pos=[sped_pos,fped_pos]; 
roll_rate=[sroll_rate,froll_rate]; 
pitch_rate=[spitch_rate,fpitch_rate]; 
yaw_rate=[syaw_rate,fyaw_rate]; 
pitch_att=[spitch_att,fpitch_att]; 
roll_att=[sroll_att,froll_att]; 
alt=[salt,falt]; 
climb_rate=[sclimb_rate,fclimb_rate]; 
mrb_rpm=[smrb_rpm,fmrb_rpm]; 
eng_torque=[seng_torque,feng_torque]; 
gw=[sgw,fgw]; 
tas_trim=[stas_trim,ftas_trim]; 
heading=[sheading,fheading]; 
tas_trgt=[stas_trgt,ftas_trgt]; 
 

%***for UH-60A helicopter add parameter “eng_torque” to the matrix below**** 
 



108

mat1=[lat_stick;long_stick;coll_pos;ped_pos;roll_rate;pitch_rate;yaw_rate;pitch_
att;roll_att;alt;climb_rate;mrb_rpm;gw;heading;tas_trgt]'  

 
% To simplify the data by eigenvalues and eigenvectors use the following part 

% mat2=mat1'*mat1; 
% [v,d]=eig(mat2); 
% After examining the eigenvalues create submatrix u 
% u=[mat1(:,9),mat1(:,10),mat1(:,11),mat1(:,12),mat1(:,13),mat1(:,14)];   
% dataeig=mat1'*u; 
 
 
c.  FILE Name: Train.m 

%********************************************************************* 
% This routine takes the output matrix of Ozcan.m code, mat1 or dataeig, by loading the 

% ascii file and filters it so that train data set can be obtained from the whole data.  

% September 2001 

%********************************************************************** 
 
clear all; 
format short e 
load oh6sl_100ft.txt;             % loading ascii file 
 
[rmax,cmax]=size(oh6sl_100ft); 
dmax=924  ;   % Enter the # of rows  associated with slow velocity data 
s=1; 
x=0; 
y=8; 
for d=1:dmax/14 
     for i=1:2:7 
         trndt(s,:)=oh6sl_100ft(i+x,:); 
         s=s+1; 
     end 
     for j=0:2:6 
        trndt(s,:)=oh6sl_100ft(j+y,:); 
        s=s+1; 
     end 
     x=x+14; 
     y=y+14; 
end 
for d1=(dmax+2):2:rmax 
     trndt(s,:)=oh6sl_100ft(d1,:); 
     s=s+1; 
end 
trndt   % training data set 



109

 
 
d.  FILE Name: Test.m 
 

%********************************************************************** 
% This routine takes the output matrix of Ozcan.m code, mat1 or dataeig, by loading the 

% ascii file and filters it so that test data set can be obtained from the whole data.  

% September 2001 

%********************************************************************** 
 
clear all; 
format short e 
load oh6sl_100ft.txt;                                            % loading ascii file 
 
[rmax,cmax]=size(oh6sl_100ft); 
dmax=924  ;                  %   Enter the #of rows  associated with  slow velocity data 
s1=1; 
x1=0; 
y1=9; 
for d2=1:dmax/14 
    for l=2:2:6 
        tstdt(s1,:)=oh6sl_100ft(l+x1,:); 
        s1=s1+1; 
    end 
    for j1=0:2:4 
        tstdt(s1,:)=oh6sl_100ft(j1+y1,:); 
        s1=s1+1; 
    end 
    x1=x1+14; 
    y1=y1+14; 
end 
for d3=(dmax+1):2:rmax 
    tstdt(s1,:)=oh6sl_100ft(d3,:); 
    s1=s1+1; 
end 
tstdt                                %   test data set 
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e.  FILE Name: Bersan.m 
 

%********************************************************************** 
% This program used to process the outputs of the NN. In this routine the output file of  

% the NN is taken as input and vectors of NN predicted speeds are created related to each 

% gross weight and sideslip angle of the helicopter. This file also produces the figures  

 % and the evaluation of the NN results. 

% October 2001 

% Note: For baseline data and single data use the specified sections of the program. Also 

% depending on the helicopter type activate and deactivate the stated lines of the code. 

%********************************************************************** 
 
clear all; 
load oh6_sl_ncdprune.txt;             % loading ascii file 
a=oh6_sl_ncdprune(:,2);                % NN outputs(predicted speeds) 
ilk=oh6_sl_ncdprune(:,1);             % target values(actual speeds) 
 
%set initial variables 
g=1; 
j=1; 
k=1; 
l=1; 
m=1; 
 
n=length(a); 
aci=[30:30:360];                          % angles for slow speed 
aci1=[-60:30:60];                         % angles for fast speed 
ai=length(aci);  
 
%  x=1.6:0.1:2.4;                    %  gross weight range of uh-60a helicopter(10^4 lb)  
x=1.500:.100:2.550;                  % gross weight range of oh-6a helicopter(10^3 lb)  
%(for UH-60A:16000:1000:24000  - for OH-6A: 1500:100:2550 ) 
 
gw=length(x);                               
na=(ai*gw*6);                       % slow velocity vector dimension (for baseline data                              

%  multiply by 6, for single data multiply by 3) 
 

% Classify the speeds and get each speed vectors 
for i=1:3:na 
   a1(j,1)=a(i,1);                             %vector of 5 kts 
   fark5(j)= abs(a1(j,1)-ilk(i,1)); 
   j=j+1; 
end 
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for i=2:3:na      
   a2(k,1)=a(i,1);                           %vector 15 kts 
   fark15(k)= abs(a2(k,1)-ilk(i,1)); 
   k=k+1; 
end 
 
for i=3:3:na      
   a3(l,1)=a(i,1);                            %vector 25 kts 
   fark25(l)= abs(a3(l,1)-ilk(i,1)); 
   l=l+1; 
end 
 
for t=(na+1):2:n 
   a4(m,1)=a(t,1);                           % vector 35 kts 
   fark35(m)= abs(a4(m,1)-ilk(t,1)); 
   m=m+1; 
end 
 for t=(na+2):2:n 
    a5(g,1)=a(t,1);                            %vector 45 kts 
    fark45(g)= abs(a5(g,1)-ilk(t,1)); 
    g=g+1;   
 end  
 

% classify speeds according to gross weights 
 
    y=length(a1); 
    b=y/gw; 
 

 % for speed = 5 kts 
    c=1; 
    for i=1:gw 
       if i>=2 
          z=1; 
          for j=(((i-1)*b)+1):i*b              
             a11(z,i)=a1(j,1); 
             z=z+1; 
          end 
       else         
          for v=1:b              
             a11(c,1)=a1(v,1); 
             c=c+1; 
          end 
       end 
    end     
     figure(1)     
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    subplot(2,2,1);plot(x,a11,'ro') 
 

 %for speed = 15 kts 
    c=1; 
    for i=1:gw 
       if i>=2 
          z=1; 
          for j=(((i-1)*b)+1):i*b              
             a22(z,i)=a2(j,1); 
             z=z+1; 
          end 
       else         
          for v=1:b              
             a22(c,1)=a2(v,1); 
             c=c+1; 
         end 
       end 
    end 
     
    hold on 
    subplot(2,2,1);plot(x,a22,'g<')   
   

 %for speed = 25 kts 
    c=1; 
    for i=1:gw 
       if i>=2 
          z=1; 
          for j=(((i-1)*b)+1):i*b              
             a33(z,i)=a3(j,1); 
             z=z+1; 
          end 
       else         
          for v=1:b              
             a33(c,1)=a3(v,1); 
             c=c+1; 
          end 
       end 
    end 
    hold on 
    subplot(2,2,1);plot(x,a33,'bo')     
 

% for airspeed = 35 kts 
    y1=length(a4);       
    b1=y1/gw; 
    c=1; 
    for i=1:gw 
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       if i>=2 
          z=1; 
          for j=(((i-1)*b1)+1):i*b1              
             a44(z,i)=a4(j,1); 
             z=z+1; 
          end 
       else         
          for v=1:b1              
             a44(c,1)=a4(v,1); 
             c=c+1; 
          end 
       end 
    end 
    hold on 
    subplot(2,2,1);plot(x,a44,'m>') 
 

 % for airspeed 45 kts 
    c=1; 
    for i=1:gw 
       if i>=2 
          z=1; 
          for j=(((i-1)*b1)+1):i*b1              
             a55(z,i)=a5(j,1); 
             z=z+1; 
          end 
       else         
          for v=1:b1              
             a55(c,1)=a5(v,1); 
             c=c+1; 
          end 
       end 
    end 
    hold on 
    subplot(2,2,1);plot(x,a55,'ko')  
    axis([1.4 2.6 0 50]) 
    title('Predicted Speed vs Grossweight','FontSize',10) 
    xlabel('Gross Weight (lb*10000)','FontSize',7)                              %for UH-60A   
    % xlabel('Gross Weight (lb*1000)','FontSize',7)                           % for OH-6A 
    ylabel('Predicted Speed (Kt)','FontSize',7) 
    set(gca,'xtick',[1.6 1.8 2.0 2.2 2.4],'ytick',[0 5 15 25 35 45])          %for UH-60A                              
    % set(gca,'xtick',[1.5 1.8 2.0 2.2 2.5],'ytick',[0 5 15 25 35 45])      % for OH-6A 
    hold off 
 

% Plotting predicted speed vs actual speed 
 
    subplot(2,2,2);plot(ilk,a,'o') 
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    axis([0 55 0 55]) 
    title('Predicted Speed vs Actual Speed','FontSize',10) 
    xlabel('Actual Speed (Kt)','FontSize',7) 
    ylabel('Predicted Speed (Kt)','FontSize',7) 
    set(gca,'xtick',[0 5 15 25 35 45],'ytick',[0 5 15 25 35 45]) 
    hold off  

 %  plotting airspeed vs. angle (for single data only) 
 
%     subplot(2,2,3);plot(aci,a11,'ro') 
%     hold on 
%     subplot(2,2,3);plot(aci,a22,'g<') 
%     hold on 
%     subplot(2,2,3);plot(aci,a33,'bo') 
%     axis([0 400 0 35]) 
%     title('Slow Speed vs Angle','FontSize',10) 
%     xlabel('Side Slip Angle (Deg)','FontSize',7) 
%     ylabel('Predicted Speed (Kt)','FontSize',7) 
%     set(gca,'xtick',[0 60 120 180 240 300 360],'ytick',[0 5 15 25 30]) 
%     hold off  
%     subplot(2,2,4);plot(aci1,a44,'m>') 
%     hold on 
%     subplot(2,2,4);plot(aci1,a55,'ko')  
%     axis([-100 100 30 50]) 
%     title('Fast Speed vs Angle','FontSize',10) 
%     xlabel('Side Slip Angle (Deg)','FontSize',7) 
%     ylabel('Predicted Speed (Kt)','FontSize',7) 
%     set(gca,'xtick',[-60 -30 0 30 60],'ytick',[30 35 40 45 50]) 
%     hold off 
 

%   For Baseline data plotting speed vs. angle use the following section of the routine 
     
    for df=1:12 
        a1m1(df,:)=a11(df,:); 
        a2m1(df,:)=a22(df,:); 
        a3m1(df,:)=a33(df,:); 
    end 
    for vc=1:5 
        a4m1(vc,:)=a44(vc,:); 
        a5m1(vc,:)=a55(vc,:); 
    end 
    nd=1; 
    for gf=13:24 
        a1m2(nd,:)=a11(gf,:); 
        a2m2(nd,:)=a22(gf,:); 
        a3m2(nd,:)=a33(gf,:); 
        nd=nd+1; 
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    end 
    nd1=1; 
    for gf1=6:10 
        a4m2(nd1,:)=a44(gf1,:); 
        a5m2(nd1,:)=a55(gf1,:); 
       nd1=nd1+1; 
    end 
    subplot(2,2,3);plot(aci,a1m1,'ro') 
    hold on 
    subplot(2,2,3);plot(aci,a1m2,'ro') 
    hold on 
    subplot(2,2,3);plot(aci,a2m1,'g<') 
    hold on 
    subplot(2,2,3);plot(aci,a2m2,'g<') 
    hold on 
    subplot(2,2,3);plot(aci,a3m1,'bo') 
    hold on 
    subplot(2,2,3);plot(aci,a3m2,'bo') 
    axis([0 400 0 35]) 
    title('Slow Speed vs Angle','FontSize',10) 
    xlabel('Side Slip Angle (Deg)','FontSize',7) 
    ylabel('Predicted Speed (Kt)','FontSize',7) 
    set(gca,'xtick',[0 60 120 180 240 300 360],'ytick',[0 5 15 25 30]) 
    hold off 
 
    subplot(2,2,4);plot(aci1,a4m1,'m>') 
    hold on 
    subplot(2,2,4);plot(aci1,a4m2,'m>') 
    hold on 
    subplot(2,2,4);plot(aci1,a5m1,'ko')  
    hold on 
    subplot(2,2,4);plot(aci1,a5m2,'ko') 
    axis([-100 100 30 50]) 
    title('Fast Speed vs Angle','FontSize',10) 
    xlabel('Side Slip Angle (Deg)','FontSize',7) 
    ylabel('Predicted Speed (Kt)','FontSize',7) 
    set(gca,'xtick',[-60 -30 0 30 60],'ytick',[30 35 40 45 50]) 
    hold off 
 

% Finding max errors for the worst case        
    for i=1:n 
       fark(i)=(abs(ilk(i)-a(i))); 
    end 
    maxfark=max(fark) 
    maxfark5=max(fark5) 
    maxfark15=max(fark15) 
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    maxfark25=max(fark25) 
    maxfark35=max(fark35) 
    maxfark45=max(fark45) 
 

% Computation of SD and percent error for each speed: 
  mn5=mean(a1) 
  sd5=std(a1) 
  per5=(sd5/5)*100 
  mn15=mean(a2) 
  sd15=std(a2) 
  per15=(sd15/15)*100 
  mn25=mean(a3) 
  sd25=std(a3) 
  per25=(sd25/25)*100 
  mn35=mean(a4) 
  sd35=std(a4) 
  per35=(sd35/35)*100 
  mn45=mean(a5) 
  sd45=std(a5) 
  per45=(sd45/45)*100 
 

 %  SD for whole data set 
 

sdw=sqrt((((na/3)-1)*(sd5^2+sd15^2+sd25^2)+(((n-na)/2)-1)* sd35^2+sd45^2)) /(n-1)) 
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